Q2 Consider a particle moving in one dimension and described by the following Hamil- tonian operator, H +x?. dx? (a) Verify that (x) = Ar exp is an eigenfunction of H and determine the associated eigenvalue. (b) Determine the value of A so that the norm of , | = V(, b) = 1 (i.e. the wavefunction is normalised to unity). %3D (Hint: Integrate by parts and use the result exp (-x²) dx = T.) (c) If the particle's quantum state is represented by v, write down an integral expression for the probability of finding the particle somewhere in the interval -1
Q2 Consider a particle moving in one dimension and described by the following Hamil- tonian operator, H +x?. dx? (a) Verify that (x) = Ar exp is an eigenfunction of H and determine the associated eigenvalue. (b) Determine the value of A so that the norm of , | = V(, b) = 1 (i.e. the wavefunction is normalised to unity). %3D (Hint: Integrate by parts and use the result exp (-x²) dx = T.) (c) If the particle's quantum state is represented by v, write down an integral expression for the probability of finding the particle somewhere in the interval -1
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
100%
Expert Solution
Introduction
If f is a eigenfunction with response to the operator H , then : H[f] = λf , where λ is the corresponding eigenvalue.
Step by step
Solved in 4 steps with 3 images
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,