Q2 Approximate this integral using Simpson's rule whose abscissa and weights are given by {-1,0,1} and {1/3,4 /3,1/ 3} , respectively.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

i need "Q2"...

you should get an expression in terms of the a's.  

Consider the cubic polynomial p(x)= a3x³ + a,x´ + a,x + ao .
Q1 Evaluate p(x) dx .
LP(x)dx = [ azx³ + a,x² + a‚x + ao dx
+ dox
2
4
3
-1
[a,(1)*, az(1)° , a (1)°
[a3(-1)* , az(-1)° , a,(-1)²
+ ao(-1)
+ a, (1)
2
4
3
4
3
az
+ do
do
4
3
4
3
of .
af a2_ af
+ do
+ do
3
3
2a2
+ 2a,
3
Q2 Approximate this integral using Simpson's rule whose abscissa and weights are given by {-1,0,1}
and {1/3,4 /3,1/3} , respectively.
||
Transcribed Image Text:Consider the cubic polynomial p(x)= a3x³ + a,x´ + a,x + ao . Q1 Evaluate p(x) dx . LP(x)dx = [ azx³ + a,x² + a‚x + ao dx + dox 2 4 3 -1 [a,(1)*, az(1)° , a (1)° [a3(-1)* , az(-1)° , a,(-1)² + ao(-1) + a, (1) 2 4 3 4 3 az + do do 4 3 4 3 of . af a2_ af + do + do 3 3 2a2 + 2a, 3 Q2 Approximate this integral using Simpson's rule whose abscissa and weights are given by {-1,0,1} and {1/3,4 /3,1/3} , respectively. ||
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,