Q13: For the B.V.P +A(7 -T) = 0, T(0) 0 A = T =1. Byusing the Finite-Difference Approximation T(3) =a. Let -T-+ (2+A(Ax))T-T = (Ax) T =1,2 on two interior nodes we get T(2) = . Then the value of the constant a oquals CA) (B) 2 (C) 1 (Đ) none Q14: Let f be some real polynomial. If the trapezoidal rule yields exact result when approximating f(x) dx , then the degree of the polynomial f is (B) 1 but not 0 (C) 0 or 1 (D) nane (A) O but not1

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
B1
Q13: For the B.V.P +A(7 -T) = 0, T(0) 0
A = T =1. Byusing the Finite-Difference Approximation
T(3) = a. Let
-T-+ (2+A(Ax))T-T = (Ax) 7T =1,2
on two interior nodes we get T(2) = . Then the value of the constant
a oquals
CA)
(B) 2
(C) 1
(Đ) none
Q14: Let
f be some real polynomial. If the trapezoidal rule yields exact result
when approximating f(x) dx , then the degree of the polynomial f is
(B) 1 but not 0
(C) 0 or 1
(D) nane
(A) O but not1
Transcribed Image Text:Q13: For the B.V.P +A(7 -T) = 0, T(0) 0 A = T =1. Byusing the Finite-Difference Approximation T(3) = a. Let -T-+ (2+A(Ax))T-T = (Ax) 7T =1,2 on two interior nodes we get T(2) = . Then the value of the constant a oquals CA) (B) 2 (C) 1 (Đ) none Q14: Let f be some real polynomial. If the trapezoidal rule yields exact result when approximating f(x) dx , then the degree of the polynomial f is (B) 1 but not 0 (C) 0 or 1 (D) nane (A) O but not1
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,