Q12 f(x) x + 1 the derivative of f on the interval [-2, 7] is given below. Define g(x)= = 5 4- 3-- 2 1 21, -2- where f is a continuous function with f(2)=-1. The graph of y f'(x) 12 3 4 5 X

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Find an equation of the line tangent to the graph of g(x) at x=2
Q12
f(x)
Define g(x)
x + 1
the derivative of f on the interval [-2, 7] is given below.
where f is a continuous function with f(2)=-1. The graph of
y
5
4
f'(x)
3
A
2
-1
+2 =1
1 2 3 4 5
2
An equation of the line tangent to the graph of g(x) at x = 2 is
X
Transcribed Image Text:Q12 f(x) Define g(x) x + 1 the derivative of f on the interval [-2, 7] is given below. where f is a continuous function with f(2)=-1. The graph of y 5 4 f'(x) 3 A 2 -1 +2 =1 1 2 3 4 5 2 An equation of the line tangent to the graph of g(x) at x = 2 is X
Expert Solution
Step 1

We know that g(x) =fxx+1 where f is a continuous function with f (2) = - 1 and we also have the plot of f'(x) in the interval [-2,7].

Required to find the equation of the tangent of g(x) at x=2

let's find the derivate of g(x)

                             g'x = x+1 f'x - fx 1x+12                      d uv = v du-u dvv2  

                                     At  x  =  2    we get  

                          g'2 = 2+1 f'2 - f22+12

                   g'2 = 3 f'2 -  f29

                 from given data we have f2 = -1 

                  From graph of f'(x)  we get  f'2 = 3

                    g'2 = 3 3 -  -19

              g'2 = 109

           Now the tangent equation is  y = mx + c  ----(1)

    where m is slope of the tangent line . That is  m = g'2 = 109

    (1)      y = 109 x + c  -----(2)

        At x = 2 we have  g(x) =fxx+1 g(2) =f22+1 = -13 = y

           From (2)  we get   -13 = 1092 +c

                      c = -13 - 209

                c = - 239

trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,