Q10) The general solution of y" +2y" -y'-2y = 0, is: a) y(x) = c₂e²x+c₂e-² +₂e* b) y(x) = c₂e-2x + c₂e-* c) y(x) = G₁₂e²x + c₂e* d) y(x) = c₂e-2x + G₂e² +Ge™* Q11) L(y") = a) s² L(y(x)) + sy(0) - y'(0) c) s² L(y(x))-sy(0)-y'(0) Q12) The kernel of the Laplace transform b) e-t b) s² L(y(x))+ sy(0) + y'(0) of f(t),t> 0.is: d) s² L(y(x))-sy(0) + y'(0) c) e- Q13) Evaluate (e-2 sin4t): a) 842 b) d) +20 8² +8+20 Q14) If the power series method was used to solve the following ODE. (x-0.5)y" x+0.5 y' + (x²-1) y = 0,xo = 0. Then the interval of convergence, is: b) (-1,1) c) (0,00) (9) Q15) Assume that the roots of a characteristic polynomial of a homogeneous ODE with constant coefficients are 0,0,0,2+51,2-51, then the general solutiom of this ODE, is: a) c₂ + ₂x + ₂x² + ex[Acos(x) + Bsin(x)] b) c₂ + ₂x + ₂x² +e5x[Acos(2x) + Bsin(2x)] c) c₂x+c₂x² + 3x³ + e*[Acos(5x) + Bsin(5x)] d) C₂ + ₂x + ₂x² +e²x [Acos(5x) + Bsin(5x)] Q16) Combine the following power series expressions into a single power series. Σ(n+1)(x-2)-1 + Enon(x - 2)" a) (2n + 1)(x)" b) 2 (2n + 2)(x)" 48=0 ²n=0 c) (2n + 2)(x - 2)" d) (2n+1)(x-2)" Q17) If you know that the radius of convergent of the series method for the ODE y"+y+=0, x=2 is 5. Find the value for b, (b < 0): (a)-5 (b)-3 (c) -2 -8 Q18) The formula of the particular solution yp of y) + 4y" = 3 sin(2t) - 5cos2t, is: a) y = Asin(t) + Bcos(t) b) yp= Atsin(t) + Btcos(t) c) y₂ = Asin(2t) + Bcos(2t) d) yp = Atsin(2t) + Btcos(2t) Q19) est dt = a) b) 0 c)=-=- d) 00 Q20) The singular point (s) of (x + 1) y' + x²y = 0, is (are): a) 0,1 b) 0,-1 c) 0 d)-1 1 Q21) L1 = b) 1-cosht c) (cosh2t - 1) 2t2y" + ty' - 3y = 0,t> 0, then y₂ (t) is: -3 a) cosht - 1 s(5²-1) Q22) Given that y₁ (t) = t¹ is solution for a) t b) ti c) t Q23) 1 d) ti -3tsinst 5 1 b) est sin3t 5 c) e-at sin3t 5 d) = a) (s-3)2+25. Q24) The general solution for y' = 6y²x, is: a) ²: = 3x² + c = x² + c b) c) == 3x² + c d) == x² + c y Q25) The form of a particular solution of y"-4y' - 12y = sin(2t), is: a) y(t) = A sin(2t) b) y, (t) = A cos(t) (t) + B sin(t) d) (1-cosh2t) est sinst 5
Q10) The general solution of y" +2y" -y'-2y = 0, is: a) y(x) = c₂e²x+c₂e-² +₂e* b) y(x) = c₂e-2x + c₂e-* c) y(x) = G₁₂e²x + c₂e* d) y(x) = c₂e-2x + G₂e² +Ge™* Q11) L(y") = a) s² L(y(x)) + sy(0) - y'(0) c) s² L(y(x))-sy(0)-y'(0) Q12) The kernel of the Laplace transform b) e-t b) s² L(y(x))+ sy(0) + y'(0) of f(t),t> 0.is: d) s² L(y(x))-sy(0) + y'(0) c) e- Q13) Evaluate (e-2 sin4t): a) 842 b) d) +20 8² +8+20 Q14) If the power series method was used to solve the following ODE. (x-0.5)y" x+0.5 y' + (x²-1) y = 0,xo = 0. Then the interval of convergence, is: b) (-1,1) c) (0,00) (9) Q15) Assume that the roots of a characteristic polynomial of a homogeneous ODE with constant coefficients are 0,0,0,2+51,2-51, then the general solutiom of this ODE, is: a) c₂ + ₂x + ₂x² + ex[Acos(x) + Bsin(x)] b) c₂ + ₂x + ₂x² +e5x[Acos(2x) + Bsin(2x)] c) c₂x+c₂x² + 3x³ + e*[Acos(5x) + Bsin(5x)] d) C₂ + ₂x + ₂x² +e²x [Acos(5x) + Bsin(5x)] Q16) Combine the following power series expressions into a single power series. Σ(n+1)(x-2)-1 + Enon(x - 2)" a) (2n + 1)(x)" b) 2 (2n + 2)(x)" 48=0 ²n=0 c) (2n + 2)(x - 2)" d) (2n+1)(x-2)" Q17) If you know that the radius of convergent of the series method for the ODE y"+y+=0, x=2 is 5. Find the value for b, (b < 0): (a)-5 (b)-3 (c) -2 -8 Q18) The formula of the particular solution yp of y) + 4y" = 3 sin(2t) - 5cos2t, is: a) y = Asin(t) + Bcos(t) b) yp= Atsin(t) + Btcos(t) c) y₂ = Asin(2t) + Bcos(2t) d) yp = Atsin(2t) + Btcos(2t) Q19) est dt = a) b) 0 c)=-=- d) 00 Q20) The singular point (s) of (x + 1) y' + x²y = 0, is (are): a) 0,1 b) 0,-1 c) 0 d)-1 1 Q21) L1 = b) 1-cosht c) (cosh2t - 1) 2t2y" + ty' - 3y = 0,t> 0, then y₂ (t) is: -3 a) cosht - 1 s(5²-1) Q22) Given that y₁ (t) = t¹ is solution for a) t b) ti c) t Q23) 1 d) ti -3tsinst 5 1 b) est sin3t 5 c) e-at sin3t 5 d) = a) (s-3)2+25. Q24) The general solution for y' = 6y²x, is: a) ²: = 3x² + c = x² + c b) c) == 3x² + c d) == x² + c y Q25) The form of a particular solution of y"-4y' - 12y = sin(2t), is: a) y(t) = A sin(2t) b) y, (t) = A cos(t) (t) + B sin(t) d) (1-cosh2t) est sinst 5
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
SOLVE Q24
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,