Q1.1 dy Find in each case. Simplify as much as possible. You must show all your work. da a) y = cos² (a) + 3+ sin²(x) (b) m(x) = In IG (c) f(x) = loga 1 - cos(x) 1 + cos(x) (2)] a³x²+x ea √r . For this part assume . Assume a > 0, 1. d dx (In(x)) X

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
**Q1**

**Q1.1**

Find \(\frac{dy}{dx}\) in each case. Simplify as much as possible. You must show all your work.

**a)** \( y = \sqrt[3]{\cos^2(x) + 3 + \sin^2(x)} \)

**b)** \( m(x) = \ln \left[ \left( \frac{1 - \cos(x)}{1 + \cos(x)} \right)^4 \right] \). For this part assume \(\frac{d}{dx}(\ln(x)) = \frac{1}{x}\).

**c)** \( f(x) = \log_a \left[ \frac{a^{3x^2 + x} \cdot a^{\sqrt{x}}}{e^a} \right] \). Assume \( a > 0, a \neq 1 \).
Transcribed Image Text:**Q1** **Q1.1** Find \(\frac{dy}{dx}\) in each case. Simplify as much as possible. You must show all your work. **a)** \( y = \sqrt[3]{\cos^2(x) + 3 + \sin^2(x)} \) **b)** \( m(x) = \ln \left[ \left( \frac{1 - \cos(x)}{1 + \cos(x)} \right)^4 \right] \). For this part assume \(\frac{d}{dx}(\ln(x)) = \frac{1}{x}\). **c)** \( f(x) = \log_a \left[ \frac{a^{3x^2 + x} \cdot a^{\sqrt{x}}}{e^a} \right] \). Assume \( a > 0, a \neq 1 \).
Expert Solution
steps

Step by step

Solved in 4 steps with 15 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning