Q1. The adiabatic enthalpy drop in a given stage of a multi-stage impulse turbine is 22.1 16° KJ/kg of steam. The nozzle outlet angle is and the efficiency of the nozzle, defined as the ratio of the actual gain of kinetic energy in the nozzle to adiabatic heat drop, is 92%. The mean diameter of the blades is 1473.2 mm and the revolution per minutes is 1500. Given that the carry over factor is 0.88, and that the blades are equiangular (the blade velocity coefficient is 0.87). Calculate the steam velocity at the outlet from nozzles, blade angles, and gross stage efficiency.
Q1. The adiabatic enthalpy drop in a given stage of a multi-stage impulse turbine is 22.1 16° KJ/kg of steam. The nozzle outlet angle is and the efficiency of the nozzle, defined as the ratio of the actual gain of kinetic energy in the nozzle to adiabatic heat drop, is 92%. The mean diameter of the blades is 1473.2 mm and the revolution per minutes is 1500. Given that the carry over factor is 0.88, and that the blades are equiangular (the blade velocity coefficient is 0.87). Calculate the steam velocity at the outlet from nozzles, blade angles, and gross stage efficiency.
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 4 images
Recommended textbooks for you
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY