Q1: Suppose the number of customers X that enter a store between the hours 9:00 a.m. and 10:00 a.m. follows a Poisson distribution with parameter 0. Suppose a random sample of the number of customers that enter the store between 9:00 a.m. and 10:00 a.m. for 10 days results in the values 9, 7, 9, 15, 10, 13, 11, 7, 2, 12 Determine the maximum likelihood estimate of 0. Show that it is an unbiased estimator.

A First Course in Probability (10th Edition)
10th Edition
ISBN:9780134753119
Author:Sheldon Ross
Publisher:Sheldon Ross
Chapter1: Combinatorial Analysis
Section: Chapter Questions
Problem 1.1P: a. How many different 7-place license plates are possible if the first 2 places are for letters and...
icon
Related questions
Question
Q1: Suppose the number of customers X that enter a store between the hours 9:00 a.m. and
10:00 a.m. follows a Poisson distribution with parameter 0. Suppose a random sample of
the number of customers that enter the store between 9:00 a.m. and 10:00 a.m. for 10 days
results in the values
9, 7, 9, 15, 10, 13, 11, 7, 2, 12
Determine the maximum likelihood estimate of 0. Show that it is an unbiased estimator.
Q2: Assume that X is a discrete random variable with pmf f(x). Let X₁,...,X₁ be a random
sample on X. Suppose that the space of X is finite, say, D={a₁,...,m}. An intuitive
estimate of p(a) is the relative frequency of a, in the sample. We express this more
formally as follows. For j=1, 2,..., m, define the statistics
1,(X) = {1 0
X₁ = a;
X₁ = a;
Then the intuitive estimate of p(a)) can be expressed by the sample average
p(a) = -1,(X₂)
Find the unbiased estimator and the variance of the estimator and its mgf.
Transcribed Image Text:Q1: Suppose the number of customers X that enter a store between the hours 9:00 a.m. and 10:00 a.m. follows a Poisson distribution with parameter 0. Suppose a random sample of the number of customers that enter the store between 9:00 a.m. and 10:00 a.m. for 10 days results in the values 9, 7, 9, 15, 10, 13, 11, 7, 2, 12 Determine the maximum likelihood estimate of 0. Show that it is an unbiased estimator. Q2: Assume that X is a discrete random variable with pmf f(x). Let X₁,...,X₁ be a random sample on X. Suppose that the space of X is finite, say, D={a₁,...,m}. An intuitive estimate of p(a) is the relative frequency of a, in the sample. We express this more formally as follows. For j=1, 2,..., m, define the statistics 1,(X) = {1 0 X₁ = a; X₁ = a; Then the intuitive estimate of p(a)) can be expressed by the sample average p(a) = -1,(X₂) Find the unbiased estimator and the variance of the estimator and its mgf.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Similar questions
Recommended textbooks for you
A First Course in Probability (10th Edition)
A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON
A First Course in Probability
A First Course in Probability
Probability
ISBN:
9780321794772
Author:
Sheldon Ross
Publisher:
PEARSON