Q1) L-1 s(s²-1) = a) cosht-1 Q2) The general solution of y"" + 2y"-y' - 2y = 0, is: a) y(x) = c₁e²x + c₂e-x + c3e* c) y(x) = c₁e²x + c₂e* b) y(x) = c₂e-2x + c₂e-* d) y(x) = c₂e-2x + c₂e* + c3e-* Q3) Evaluate L (e-²t sin4t): 4 5+2 b) 5+2 s²+8s+20 S²+45+20 s²+45+20 s²+8s+20 Q4) If the power series method was used to solve the following ODE. (x -0.5)y" 1 - y' + (x² - 1) y=0, x= 0. Then the interval of convergence, is: x+0.5 a) b) (-1,1) c) (0,00) Q5) fest dt = b) 0 d) ∞ . y Q6) If you know that the radius of convergent of the series method for the ODE y"+y' + = 0, xo = 2 is 5. Find the value for b. (b < 0) : (a)-5 x-b d) -8 (c)-2 (b)-3 Q7) L(y") = a) s²L(y(x)) + sy(0) - y'(0) b) s² L(y(x)) + sy(0) + y'(0) c) s²L(y(x))-sy(0) - y'(0) d) s²L(y(x))-sy(0) + y'(0) Q8) Assume that the roots of a characteristic polynomial of a homogeneous ODE with constant coefficients are 0,0,0,2+5i,2-5i, then the general solutiom of this ODE, is: a) C₁ + C₂x + C3x² + e²x [Acos(x) + Bsin(x)] b) C₁+C₂x + C3x² + esx[Acos (2x) + Bsin(2x)] c) C₁x + ₂x² + C3x³ + ex[Acos (5x) + Bsin(5x)] d) C₁+C₂x + C3x² + e²x [Acos(5x) + Bsin(5x)] Q9) The linear form of nonlinear ODE y' - 2y = 2y, is: a) u' + 6u = -6 b) u' - 6u = -6 c) u' - 6u = 6 d) u' + 6u = 6 Q10) The singular point (s) of (x + 1) y' + x²y = 0, is (are): b) 0,-1 a) 0,1 c) 0 d)-1 b) 1 - cosht c) (cosh2t - 1) d) (1 - cosh2t)
Q1) L-1 s(s²-1) = a) cosht-1 Q2) The general solution of y"" + 2y"-y' - 2y = 0, is: a) y(x) = c₁e²x + c₂e-x + c3e* c) y(x) = c₁e²x + c₂e* b) y(x) = c₂e-2x + c₂e-* d) y(x) = c₂e-2x + c₂e* + c3e-* Q3) Evaluate L (e-²t sin4t): 4 5+2 b) 5+2 s²+8s+20 S²+45+20 s²+45+20 s²+8s+20 Q4) If the power series method was used to solve the following ODE. (x -0.5)y" 1 - y' + (x² - 1) y=0, x= 0. Then the interval of convergence, is: x+0.5 a) b) (-1,1) c) (0,00) Q5) fest dt = b) 0 d) ∞ . y Q6) If you know that the radius of convergent of the series method for the ODE y"+y' + = 0, xo = 2 is 5. Find the value for b. (b < 0) : (a)-5 x-b d) -8 (c)-2 (b)-3 Q7) L(y") = a) s²L(y(x)) + sy(0) - y'(0) b) s² L(y(x)) + sy(0) + y'(0) c) s²L(y(x))-sy(0) - y'(0) d) s²L(y(x))-sy(0) + y'(0) Q8) Assume that the roots of a characteristic polynomial of a homogeneous ODE with constant coefficients are 0,0,0,2+5i,2-5i, then the general solutiom of this ODE, is: a) C₁ + C₂x + C3x² + e²x [Acos(x) + Bsin(x)] b) C₁+C₂x + C3x² + esx[Acos (2x) + Bsin(2x)] c) C₁x + ₂x² + C3x³ + ex[Acos (5x) + Bsin(5x)] d) C₁+C₂x + C3x² + e²x [Acos(5x) + Bsin(5x)] Q9) The linear form of nonlinear ODE y' - 2y = 2y, is: a) u' + 6u = -6 b) u' - 6u = -6 c) u' - 6u = 6 d) u' + 6u = 6 Q10) The singular point (s) of (x + 1) y' + x²y = 0, is (are): b) 0,-1 a) 0,1 c) 0 d)-1 b) 1 - cosht c) (cosh2t - 1) d) (1 - cosh2t)
Q1) L-1 s(s²-1) = a) cosht-1 Q2) The general solution of y"" + 2y"-y' - 2y = 0, is: a) y(x) = c₁e²x + c₂e-x + c3e* c) y(x) = c₁e²x + c₂e* b) y(x) = c₂e-2x + c₂e-* d) y(x) = c₂e-2x + c₂e* + c3e-* Q3) Evaluate L (e-²t sin4t): 4 5+2 b) 5+2 s²+8s+20 S²+45+20 s²+45+20 s²+8s+20 Q4) If the power series method was used to solve the following ODE. (x -0.5)y" 1 - y' + (x² - 1) y=0, x= 0. Then the interval of convergence, is: x+0.5 a) b) (-1,1) c) (0,00) Q5) fest dt = b) 0 d) ∞ . y Q6) If you know that the radius of convergent of the series method for the ODE y"+y' + = 0, xo = 2 is 5. Find the value for b. (b < 0) : (a)-5 x-b d) -8 (c)-2 (b)-3 Q7) L(y") = a) s²L(y(x)) + sy(0) - y'(0) b) s² L(y(x)) + sy(0) + y'(0) c) s²L(y(x))-sy(0) - y'(0) d) s²L(y(x))-sy(0) + y'(0) Q8) Assume that the roots of a characteristic polynomial of a homogeneous ODE with constant coefficients are 0,0,0,2+5i,2-5i, then the general solutiom of this ODE, is: a) C₁ + C₂x + C3x² + e²x [Acos(x) + Bsin(x)] b) C₁+C₂x + C3x² + esx[Acos (2x) + Bsin(2x)] c) C₁x + ₂x² + C3x³ + ex[Acos (5x) + Bsin(5x)] d) C₁+C₂x + C3x² + e²x [Acos(5x) + Bsin(5x)] Q9) The linear form of nonlinear ODE y' - 2y = 2y, is: a) u' + 6u = -6 b) u' - 6u = -6 c) u' - 6u = 6 d) u' + 6u = 6 Q10) The singular point (s) of (x + 1) y' + x²y = 0, is (are): b) 0,-1 a) 0,1 c) 0 d)-1 b) 1 - cosht c) (cosh2t - 1) d) (1 - cosh2t)
With integration, one of the major concepts of calculus. Differentiation is the derivative or rate of change of a function with respect to the independent variable.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.