(Q1) find the Fourier series for the periodic function (B) f(x)= x³ +x (C) f(x) = [₁ + * - 1

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%
(Q1) find the Fourier series for the periodic function
(B) f(x)= x³
(C) ƒ(x) = [1 + x
-1<x<1
-1<x<0
0<x<
<i]
Transcribed Image Text:(Q1) find the Fourier series for the periodic function (B) f(x)= x³ (C) ƒ(x) = [1 + x -1<x<1 -1<x<0 0<x< <i]
Expert Solution
Step 1: We give the standard form of Fourier series of a function.

Note : '' As per guidelines we will solve the first question. If you want any specific question to be solved please specify that question or post only that question.''

left parenthesis B right parenthesis space space space space f left parenthesis x right parenthesis equals x cubed space space semicolon space space space space minus 1 less or equal than x less or equal than 1

(.) Fourier series of a function f left parenthesis x right parenthesis such that negative c less or equal than x less or equal than c is given by,

f left parenthesis x right parenthesis space equals space a subscript 0 over 2 space plus space sum from n equals 1 to infinity of a subscript n cos open parentheses fraction numerator n pi x over denominator c end fraction close parentheses plus sum from n equals 1 to infinity of b subscript n sin open parentheses fraction numerator n pi x over denominator c end fraction close parentheses

where a subscript 0 space comma space a subscript n space space & space space space b subscript n are Fourier coefficients  given by,

a subscript 0 equals 1 over c integral subscript negative c end subscript superscript c f left parenthesis x right parenthesis d x space space space space comma space space a subscript n equals 1 over c integral subscript negative c end subscript superscript c f left parenthesis x right parenthesis cos open parentheses fraction numerator n pi x over denominator c end fraction close parentheses d x space space space & space space space b subscript n equals 1 over c integral subscript negative c end subscript superscript c f left parenthesis x right parenthesis sin open parentheses fraction numerator n pi x over denominator c end fraction close parentheses d x

(*)  If  f left parenthesis x right parenthesis is an odd function then integral subscript negative a end subscript superscript a f left parenthesis x right parenthesis d x equals 0 .

(*)  If f left parenthesis x right parenthesis is an even function then  integral subscript negative a end subscript superscript a f left parenthesis x right parenthesis d x space equals space 2 integral subscript 0 superscript a f left parenthesis x right parenthesis d x.

(.)  A function f left parenthesis x right parenthesis is said to be an even function if f left parenthesis negative x right parenthesis equals f left parenthesis x right parenthesis.

(.) A function f left parenthesis x right parenthesis is said to be an odd function if  f left parenthesis negative x right parenthesis equals negative f left parenthesis x right parenthesis.

(.)  cos left parenthesis x right parenthesis is an even function and sin left parenthesis x right parenthesis is an odd function.


steps

Step by step

Solved in 3 steps with 50 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,