Q. The first fundamental form of of the surface (S) is given by I(du, dv) = udu + 4vdudv + d'v. Consider the transformation 0 = u – v, 0= u. Then I(d0, do) = 1.(1 – 40 + 5ø) d0 + (40 – 40 – 2)d0do + d°o 2.d0 + (40 3.d? о + (1 -40+ 5ф) dвdф + (40- 4ф— 2)d? ф 4.d0 + (4ø – 460 – 2)dedo + (1- 40 + 5ø) d²o 5. None of these. - 4ф - 2)d0dф + (1 - 40 + 5ф) d ф —

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Q. The first fundamental form of of the surface (S) is given by
I(du, dv) = udu + 4vdudv + d'v.
Consider the transformation 0 = u – v,o= u.
Then I(d0, do) =
1.(1
40 + 5ø) d'0 + (40 – 40 – 2)d0dh + d'o
2.d0 + (40 - 4ø – 2)d0do + (1– 40 + 50) d'o
3.20 + (1
- 40 + 5ø) dodo + (40 – 40 – 2)d²o
4.d0 + (40 – 40 – 2)dedo + (1– 40 + 5ø) d?o
5. None of these.
-
Option 1
Option 2
Option 3
Option 4
Option 5
Q. If u = u(0, ø), v = v(0, ) transforms the first fundamental form
of a surface (S) I(du, du) = ud'u+udv into I(d0, do) = d'0+(0 +)° d¢,
where u, v, 0,o> 0,then the Jacobian of the transformation equals
1.J =
2.J =
3.J =
0+の
4.J =
0+の
5. None of these.
Option 1
Option 2
Option 3
Option 4
L0 Option 5
Transcribed Image Text:Q. The first fundamental form of of the surface (S) is given by I(du, dv) = udu + 4vdudv + d'v. Consider the transformation 0 = u – v,o= u. Then I(d0, do) = 1.(1 40 + 5ø) d'0 + (40 – 40 – 2)d0dh + d'o 2.d0 + (40 - 4ø – 2)d0do + (1– 40 + 50) d'o 3.20 + (1 - 40 + 5ø) dodo + (40 – 40 – 2)d²o 4.d0 + (40 – 40 – 2)dedo + (1– 40 + 5ø) d?o 5. None of these. - Option 1 Option 2 Option 3 Option 4 Option 5 Q. If u = u(0, ø), v = v(0, ) transforms the first fundamental form of a surface (S) I(du, du) = ud'u+udv into I(d0, do) = d'0+(0 +)° d¢, where u, v, 0,o> 0,then the Jacobian of the transformation equals 1.J = 2.J = 3.J = 0+の 4.J = 0+の 5. None of these. Option 1 Option 2 Option 3 Option 4 L0 Option 5
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,