Q 25. If ABCA and ADEA are similar, what is the value of r? B D 6 ft. 25 ft. A 5 ft. E 19 ft. 5 ft. 25 ft. 30 ft.

Elementary Geometry For College Students, 7e
7th Edition
ISBN:9781337614085
Author:Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:Alexander, Daniel C.; Koeberlein, Geralyn M.
ChapterP: Preliminary Concepts
SectionP.CT: Test
Problem 1CT
icon
Related questions
Question
### Problem 25:

**Question:**

If triangles \( \triangle BCA \) and \( \triangle DEA \) are similar, what is the value of \( x \)?

**Diagram Description:**

- Two right triangles, \( \triangle BCA \) and \( \triangle DEA \), are shown in the diagram.
- Triangle \( \triangle BCA \) has:
  - Base \( CA = 25 \) ft.
  - Height \( BC = x \).
  - A right angle at \( C \).
- Triangle \( \triangle DEA \) has:
  - Base \( EA = 5 \) ft.
  - Height \( DE = 6 \) ft.
  - A right angle at \( A \).

**Answer Options:**

- \( \text{A. } 19 \text{ ft.} \)
- \( \text{B. } 5 \text{ ft.} \)
- \( \text{C. } 25 \text{ ft.} \)
- \( \text{D. } 30 \text{ ft.} \)

**Explanation:**

Since the triangles \( \triangle BCA \) and \( \triangle DEA \) are similar, their corresponding sides are proportional.

\[
\frac{BC}{DE} = \frac{CA}{EA}
\]

Substitute the known values:

\[
\frac{x}{6} = \frac{25}{5}
\]

Simplify \( \frac{25}{5} \) to get 5:

\[
\frac{x}{6} = 5
\]

Solve for \( x \):

\[
x = 6 \times 5 = 30 \text{ ft.}
\]

**Correct Answer:**

- \( \text{D. } 30 \text{ ft.} \)
Transcribed Image Text:### Problem 25: **Question:** If triangles \( \triangle BCA \) and \( \triangle DEA \) are similar, what is the value of \( x \)? **Diagram Description:** - Two right triangles, \( \triangle BCA \) and \( \triangle DEA \), are shown in the diagram. - Triangle \( \triangle BCA \) has: - Base \( CA = 25 \) ft. - Height \( BC = x \). - A right angle at \( C \). - Triangle \( \triangle DEA \) has: - Base \( EA = 5 \) ft. - Height \( DE = 6 \) ft. - A right angle at \( A \). **Answer Options:** - \( \text{A. } 19 \text{ ft.} \) - \( \text{B. } 5 \text{ ft.} \) - \( \text{C. } 25 \text{ ft.} \) - \( \text{D. } 30 \text{ ft.} \) **Explanation:** Since the triangles \( \triangle BCA \) and \( \triangle DEA \) are similar, their corresponding sides are proportional. \[ \frac{BC}{DE} = \frac{CA}{EA} \] Substitute the known values: \[ \frac{x}{6} = \frac{25}{5} \] Simplify \( \frac{25}{5} \) to get 5: \[ \frac{x}{6} = 5 \] Solve for \( x \): \[ x = 6 \times 5 = 30 \text{ ft.} \] **Correct Answer:** - \( \text{D. } 30 \text{ ft.} \)
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elementary Geometry For College Students, 7e
Elementary Geometry For College Students, 7e
Geometry
ISBN:
9781337614085
Author:
Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:
Cengage,
Elementary Geometry for College Students
Elementary Geometry for College Students
Geometry
ISBN:
9781285195698
Author:
Daniel C. Alexander, Geralyn M. Koeberlein
Publisher:
Cengage Learning