Q 12 please

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Q 12 please
2
9
3
4
5
6
8
7
Which of the following is a second-order linear nonhomogenous ODE?
C) sin(x) (y)² + y = 0 D) sin(x)y"y+
C) y = ²³ x² + D) y = ²x².
A) sin(x)y" + y = 0
B) sin(x)y" +
y + 3 = 0
2
3
A) y=e*² +e B) y=e¹² C)y=e³² +e_D) y=e¹
By using a suitable substitution, the non-separable ODE xy' = x³ + y, is reduces to a separable ODE of the form:
A)u' = = = =
1
B) u'=x
C) xu'+2u=0
D) u'= -x
Find the general solution of y"-3y'=0
A) y =q₁x+c₂e³
C) y = ₁+c₂e³x
D) y=q₁ +c₂e³x
Find the value(s) fork in which the general solution of 3y"+y+ky=0 is of the form c,e¹ + ₂x²,
{c₁, c₂, are real constants}
A) k = 12
B) k=0
C) k = 1
D) k = /2
1
12.
Find an ODE whose basis of the general solution the functions y, = sin 3x, y₂ = cos 3x
A)
y"-9y=0
B) y"+9y=0
C) y"-3y=0
D) y"+3y=0
10 The integrating factor of the non-exact D.E. (ex+y+yey) dx + (xey-1) dy = 0
(a) e-y
4
Find the general solution of y'++y = 4x ?
B) y=x² +
x
Find the values for the constants a, b in which the ODE (axy-by²) dx-(x² + 4xy) dy=0 is exact?
A) a=3,b=-2
B) a=-3,b=-2
C) a=3,b=4
D) a=0,b=-2
By using a suitable substitution, the Bernoulli ODE y'+ xy = y, becomes a linear ODE of the form:
A) u'-4xu = -4
B) u'-3x = -3u
C) u'+3xu = 3
D) u'-3xu = -3
Find the exact solution for x'y'-y=0, y(1)=1
A) y = x² +
C
-2x
B) y=ce²+c₂e²
(b)-y
11 the general solution for the second order ODE y" + 11y' + 24y = 0
(c) y ³
a) y = C₁ ex+C₂ e³x
(b) y = C₁ ex+C₂ e ³x
-8x
12 the integrating factor for the first order ODE y' = 3 + 2y is
(a) e²
(b) e2
(c) e 2x
(d) e²x
(d) y-³
(c) y = C₁ e³x +C₂ e³x (d) y = C₁ e
Transcribed Image Text:2 9 3 4 5 6 8 7 Which of the following is a second-order linear nonhomogenous ODE? C) sin(x) (y)² + y = 0 D) sin(x)y"y+ C) y = ²³ x² + D) y = ²x². A) sin(x)y" + y = 0 B) sin(x)y" + y + 3 = 0 2 3 A) y=e*² +e B) y=e¹² C)y=e³² +e_D) y=e¹ By using a suitable substitution, the non-separable ODE xy' = x³ + y, is reduces to a separable ODE of the form: A)u' = = = = 1 B) u'=x C) xu'+2u=0 D) u'= -x Find the general solution of y"-3y'=0 A) y =q₁x+c₂e³ C) y = ₁+c₂e³x D) y=q₁ +c₂e³x Find the value(s) fork in which the general solution of 3y"+y+ky=0 is of the form c,e¹ + ₂x², {c₁, c₂, are real constants} A) k = 12 B) k=0 C) k = 1 D) k = /2 1 12. Find an ODE whose basis of the general solution the functions y, = sin 3x, y₂ = cos 3x A) y"-9y=0 B) y"+9y=0 C) y"-3y=0 D) y"+3y=0 10 The integrating factor of the non-exact D.E. (ex+y+yey) dx + (xey-1) dy = 0 (a) e-y 4 Find the general solution of y'++y = 4x ? B) y=x² + x Find the values for the constants a, b in which the ODE (axy-by²) dx-(x² + 4xy) dy=0 is exact? A) a=3,b=-2 B) a=-3,b=-2 C) a=3,b=4 D) a=0,b=-2 By using a suitable substitution, the Bernoulli ODE y'+ xy = y, becomes a linear ODE of the form: A) u'-4xu = -4 B) u'-3x = -3u C) u'+3xu = 3 D) u'-3xu = -3 Find the exact solution for x'y'-y=0, y(1)=1 A) y = x² + C -2x B) y=ce²+c₂e² (b)-y 11 the general solution for the second order ODE y" + 11y' + 24y = 0 (c) y ³ a) y = C₁ ex+C₂ e³x (b) y = C₁ ex+C₂ e ³x -8x 12 the integrating factor for the first order ODE y' = 3 + 2y is (a) e² (b) e2 (c) e 2x (d) e²x (d) y-³ (c) y = C₁ e³x +C₂ e³x (d) y = C₁ e
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,