Purpose Mathematical models based on quadratic equations describe curved paths through space. The purpose of this project is to develop an understanding of techniques used to apply quadratic models to describe motion. Assignment Goal Describe the motion of a rocket using a quadratic model. Instructions: Respond to each of the questions. Your solutions must document all of your work. Scenario: A toy rocket is launched straight upward from a pad 10 ft above ground level with an initial velocity of 80 ft/sec. Use the general formula for the vertical position (height) of an object moving under the influence of gravity ?= ―1 2??2 + ?0?+ ?0 where s0 is initial vertical position, v0 is initial velocity, and s is vertical position of the object. 1. Define a model (equation) to express the vertical position (height) of the rocket s (in meters) above ground level t seconds after launch. Let g = 32 ft/sec2.
Purpose
Mathematical models based on quadratic equations describe curved paths through space.
The purpose of this project is to develop an understanding of techniques used to apply quadratic models to describe motion.
Assignment Goal
Describe the motion of a rocket using a quadratic model.
Instructions:
Respond to each of the questions. Your solutions must document all of your work.
Scenario: A toy rocket is launched straight upward from a pad 10 ft above ground level with
an initial velocity of 80 ft/sec.
Use the general formula for the vertical position (height) of an object moving under the
influence of gravity ?= ―1
2??2 + ?0?+ ?0 where s0 is initial vertical position, v0 is initial
velocity, and s is vertical position of the object.
2. Graph your equation with time on the horizontal axis and height on the vertical axis. Let the values for time range from 0 to 10 seconds and the values for the height range from 0 to 200 feet. Include your graph in this response.
3. Refer to your graph in Question 2. Explain what the vertex, x-intercept, and y-intercept represent in the context of this problem.
4. Calculate the time(s) at which the rocket is at a height of 40 ft. (Round to 1 decimal place.) Is this the maximum height the rocket will reach? Justify your response
Round to the nearest hundredth. Explain your answer.
Trending now
This is a popular solution!
Step by step
Solved in 3 steps