Pump Horsepower in Brine System. A pump pumps 0.200 ft3/s of brine solution having a density of 1.15 g/cm3 from an open feed tank having a large cross-sectional area. The suction line has an inside diameter of 3.548 in. and the discharge line from the pump a diameter of 2.067 in. The discharge flow goes to an open overhead tank and the open end of this line is 75 ft above the liquid level in the feed tank. If the friction losses in the piping system are 18.0 ft· lbf/lbm, what pressure must the pump develop and what is the horsepower of the pump if the efficiency is 70%? The flow is turbulent.
Pump Horsepower in Brine System. A pump pumps 0.200 ft3/s of brine solution having a density of 1.15 g/cm3 from an open feed tank having a large cross-sectional area. The suction line has an inside diameter of 3.548 in. and the discharge line from the pump a diameter of 2.067 in. The discharge flow goes to an open overhead tank and the open end of this line is 75 ft above the liquid level in the feed tank. If the friction losses in the piping system are 18.0 ft· lbf/lbm, what pressure must the pump develop and what is the horsepower of the pump if the efficiency is 70%? The flow is turbulent.
Chapter2: Loads On Structures
Section: Chapter Questions
Problem 1P
Related questions
Question
Pump Horsepower in Brine System. A pump pumps 0.200 ft3/s of brine solution having a density of 1.15 g/cm3 from an open feed tank having a large cross-sectional area. The suction line has an inside diameter of 3.548 in. and the discharge line from the pump a diameter of 2.067 in. The discharge flow goes to an open overhead tank and the open end of this line is 75 ft above the liquid level in the feed tank. If the friction losses in the piping system are 18.0 ft· lbf/lbm, what pressure must the pump develop and what is the horsepower of the pump if the efficiency is 70%? The flow is turbulent.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
Structural Analysis (10th Edition)
Civil Engineering
ISBN:
9780134610672
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning
Structural Analysis (10th Edition)
Civil Engineering
ISBN:
9780134610672
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning
Fundamentals of Structural Analysis
Civil Engineering
ISBN:
9780073398006
Author:
Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel Lanning
Publisher:
McGraw-Hill Education
Traffic and Highway Engineering
Civil Engineering
ISBN:
9781305156241
Author:
Garber, Nicholas J.
Publisher:
Cengage Learning