pruttes) Select either a) or b) to solve. Please indicate which problem you sol Solve the IVP using the method of Laplace transforms y"-2y'+y=2t-3; y(1) = 5, y'(1)=3 =3, y'(0)=0..

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Differential equations 

### Educational Transcription and Explanation of Laplace Transform Problem Solving

#### Problem Statement:
- **Select either a) or b) to solve. Please indicate which problem you solved.**
  - a) Solve the IVP using the method of Laplace transforms: \( y^{\prime \prime} - 2y^{\prime} + y = 2 - 3 \)
    - \( y(1) = 5 \), \( y^{\prime}(1) = 3 \)
  - b) Solve the IVP using the method of Laplace transforms: \( y^{\prime \prime} - 2y^{\prime} + 8y = 0 \)
    - \( y(0) = 3 \), \( y^{\prime}(0) = 0 \)

#### Solution:

1. **Given Formula:**
   \[ n = t + 1 \]
   \[ t = n + 1 \]
   \[ y''(n + 1) - 2y'(n + 1) + y(n + 1) = 2(n + 1) - 3 \]

2. **Transform and Initial Conditions:**
   \[ u(t) = y(n+1) \]
   \[ u'(t) = y'(n + 1) \]
   \[ y(0) = 5 \quad \text{(Given)} \]
   \[ y'(0) = 3 \quad \text{(Given)} \]
   \[ u(0) = y(1) = 5 \quad (y_0 = 5) \]
   \[ u_1(0) = y(1) = 3 \quad (u_0 = 3) \]

3. **Differential Transform:**
   \[ u'' - 2u' + u = 2n - 1 \]

4. **Initial Values for Transformation:**
   \[ u(0) = 5 \]
   \[ u'(0) = 3 \]

5. **Laplace Transformation:**
   \[ (s^2 - 2s + 1) u = 2u(s) / s^2 + 3 \]

6. **Solving the Transformed Equation:**
   \[ \hat{U}(
Transcribed Image Text:### Educational Transcription and Explanation of Laplace Transform Problem Solving #### Problem Statement: - **Select either a) or b) to solve. Please indicate which problem you solved.** - a) Solve the IVP using the method of Laplace transforms: \( y^{\prime \prime} - 2y^{\prime} + y = 2 - 3 \) - \( y(1) = 5 \), \( y^{\prime}(1) = 3 \) - b) Solve the IVP using the method of Laplace transforms: \( y^{\prime \prime} - 2y^{\prime} + 8y = 0 \) - \( y(0) = 3 \), \( y^{\prime}(0) = 0 \) #### Solution: 1. **Given Formula:** \[ n = t + 1 \] \[ t = n + 1 \] \[ y''(n + 1) - 2y'(n + 1) + y(n + 1) = 2(n + 1) - 3 \] 2. **Transform and Initial Conditions:** \[ u(t) = y(n+1) \] \[ u'(t) = y'(n + 1) \] \[ y(0) = 5 \quad \text{(Given)} \] \[ y'(0) = 3 \quad \text{(Given)} \] \[ u(0) = y(1) = 5 \quad (y_0 = 5) \] \[ u_1(0) = y(1) = 3 \quad (u_0 = 3) \] 3. **Differential Transform:** \[ u'' - 2u' + u = 2n - 1 \] 4. **Initial Values for Transformation:** \[ u(0) = 5 \] \[ u'(0) = 3 \] 5. **Laplace Transformation:** \[ (s^2 - 2s + 1) u = 2u(s) / s^2 + 3 \] 6. **Solving the Transformed Equation:** \[ \hat{U}(
Expert Solution
steps

Step by step

Solved in 4 steps with 2 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,