Prove the trigonometric identity. tan x+cot sec? Csc x cos x Drag an expression to each box to correctly complete the proof. tan x+cot x sec2 x Csc x cos x - sec²x sec2x sec²x - sec?x sec²x

Trigonometry (11th Edition)
11th Edition
ISBN:9780134217437
Author:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Chapter1: Trigonometric Functions
Section: Chapter Questions
Problem 1RE: 1. Give the measures of the complement and the supplement of an angle measuring 35°.
icon
Related questions
Question
**Title**: Proving the Trigonometric Identity

**Objective**: Learn and understand how to prove the given trigonometric identity.

**Given Identity**:
\[ \frac{\tan x + \cot x}{\csc x \cos x} = \sec^2 x \]

**Task**: Drag an expression to each box to correctly complete the proof.

### Steps to Complete the Proof:

- **Step 1**:
  \[ \frac{\tan x + \cot x}{\csc x \cos x} = \sec^2 x \]
  To prove the identity, first break down the given components.
  
- **Step 2**:
  Simplify \(\tan x\) and \(\cot x\):
  \[ \tan x = \frac{\sin x}{\cos x} \quad \text{and} \quad \cot x = \frac{\cos x}{\sin x} \]

- **Step 3**:
  Combine the fractions under a common denominator:
  \[ \tan x + \cot x = \frac{\sin x}{\cos x} + \frac{\cos x}{\sin x} = \frac{\sin^2 x + \cos^2 x}{\sin x \cos x} \]

- **Step 4**:
  Use the Pythagorean identity \(\sin^2 x + \cos^2 x = 1\):
  \[ \frac{\sin^2 x + \cos^2 x}{\sin x \cos x} = \frac{1}{\sin x \cos x} \]

- **Step 5**:
  Simplify \(\csc x \cos x\):
  \[ \csc x = \frac{1}{\sin x} \]
  So,
  \[ \frac{\tan x + \cot x}{\csc x \cos x} = \frac{\frac{1}{\sin x \cos x}}{\frac{1}{\sin x} \cos x} = \frac{1}{\cos^2 x} \]

- **Step 6**:
  Recognize that \(\frac{1}{\cos^2 x} = \sec^2 x\):
  \[ \frac{1}{\cos^2 x} = \sec^2 x \]
Transcribed Image Text:**Title**: Proving the Trigonometric Identity **Objective**: Learn and understand how to prove the given trigonometric identity. **Given Identity**: \[ \frac{\tan x + \cot x}{\csc x \cos x} = \sec^2 x \] **Task**: Drag an expression to each box to correctly complete the proof. ### Steps to Complete the Proof: - **Step 1**: \[ \frac{\tan x + \cot x}{\csc x \cos x} = \sec^2 x \] To prove the identity, first break down the given components. - **Step 2**: Simplify \(\tan x\) and \(\cot x\): \[ \tan x = \frac{\sin x}{\cos x} \quad \text{and} \quad \cot x = \frac{\cos x}{\sin x} \] - **Step 3**: Combine the fractions under a common denominator: \[ \tan x + \cot x = \frac{\sin x}{\cos x} + \frac{\cos x}{\sin x} = \frac{\sin^2 x + \cos^2 x}{\sin x \cos x} \] - **Step 4**: Use the Pythagorean identity \(\sin^2 x + \cos^2 x = 1\): \[ \frac{\sin^2 x + \cos^2 x}{\sin x \cos x} = \frac{1}{\sin x \cos x} \] - **Step 5**: Simplify \(\csc x \cos x\): \[ \csc x = \frac{1}{\sin x} \] So, \[ \frac{\tan x + \cot x}{\csc x \cos x} = \frac{\frac{1}{\sin x \cos x}}{\frac{1}{\sin x} \cos x} = \frac{1}{\cos^2 x} \] - **Step 6**: Recognize that \(\frac{1}{\cos^2 x} = \sec^2 x\): \[ \frac{1}{\cos^2 x} = \sec^2 x \]
This image appears to show a series of mathematical expressions involving trigonometric functions. Below is the transcription and explanation of the expressions presented, step-by-step:

1. Initial Expression:
\[ \frac{1}{\sin x \cos x} \cdot \frac{\sin x}{\cos x} \]

2. Combination of Fractions:
\[ \frac{1}{\sin x \cos x} \cdot \frac{\sin x}{\cos x} = \frac{1 \cdot \sin x}{\sin x \cos x \cdot \cos x} = \frac{\sin x}{\sin x \cos^2 x} \]

3. Simplification:
\[ \frac{\sin x}{\sin x \cos^2 x} = \frac{\sin^2 x + \cos^2 x}{\sin x \cos^2 x} \]

4. Trigonometric Identity:
\[ \text{Since} \ \sin^2 x + \cos^2 x = 1, \ \text{the expression becomes} \ \frac{1}{\sin x \cos^2 x} \]

5. Further Simplification:
\[ \frac{1}{\sin x \cos^2 x} \cdot \cos x = \frac{\cos x}{\sin x \cos^2 x} = \frac{\cos x}{\sin x \cos x} \cdot \frac{1}{\cos x} \]

6. Simplifying the Multiplication:
\[ \frac{\cos x}{\sin x \cos x} \cdot \frac{1}{\cos x} = \frac{1}{\sin x \cos x} \]

7. Final Simplified Expression:
\[ \frac{1}{\sin x \cos x} \]

Throughout the steps, the process involves breaking down and simplifying the trigonometric expressions, leveraging trigonometric identities, and combining fractions appropriately. The expression is continually simplified until it reaches the final result: \(\frac{1}{\sin x \cos x}\).
Transcribed Image Text:This image appears to show a series of mathematical expressions involving trigonometric functions. Below is the transcription and explanation of the expressions presented, step-by-step: 1. Initial Expression: \[ \frac{1}{\sin x \cos x} \cdot \frac{\sin x}{\cos x} \] 2. Combination of Fractions: \[ \frac{1}{\sin x \cos x} \cdot \frac{\sin x}{\cos x} = \frac{1 \cdot \sin x}{\sin x \cos x \cdot \cos x} = \frac{\sin x}{\sin x \cos^2 x} \] 3. Simplification: \[ \frac{\sin x}{\sin x \cos^2 x} = \frac{\sin^2 x + \cos^2 x}{\sin x \cos^2 x} \] 4. Trigonometric Identity: \[ \text{Since} \ \sin^2 x + \cos^2 x = 1, \ \text{the expression becomes} \ \frac{1}{\sin x \cos^2 x} \] 5. Further Simplification: \[ \frac{1}{\sin x \cos^2 x} \cdot \cos x = \frac{\cos x}{\sin x \cos^2 x} = \frac{\cos x}{\sin x \cos x} \cdot \frac{1}{\cos x} \] 6. Simplifying the Multiplication: \[ \frac{\cos x}{\sin x \cos x} \cdot \frac{1}{\cos x} = \frac{1}{\sin x \cos x} \] 7. Final Simplified Expression: \[ \frac{1}{\sin x \cos x} \] Throughout the steps, the process involves breaking down and simplifying the trigonometric expressions, leveraging trigonometric identities, and combining fractions appropriately. The expression is continually simplified until it reaches the final result: \(\frac{1}{\sin x \cos x}\).
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 3 images

Blurred answer
Knowledge Booster
Half-angle, Double-angle, and Product-Sum Formulae
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, trigonometry and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Trigonometry (11th Edition)
Trigonometry (11th Edition)
Trigonometry
ISBN:
9780134217437
Author:
Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:
PEARSON
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781305652224
Author:
Charles P. McKeague, Mark D. Turner
Publisher:
Cengage Learning
Algebra and Trigonometry
Algebra and Trigonometry
Trigonometry
ISBN:
9781938168376
Author:
Jay Abramson
Publisher:
OpenStax
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781337278461
Author:
Ron Larson
Publisher:
Cengage Learning