Prove the identity. sin(x - 7T) = -sin(x) Use the Subtraction Formula for Sine, and then simplify. sin(x - 7) = (sin(x)( cos sin(x) )

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
**Prove the identity.**

\[
\sin(x - \pi) = -\sin(x)
\]

Use the Subtraction Formula for Sine, and then simplify.

\[
\sin(x - \pi) = (\sin(x) \cdot \underline{\hspace{2em}}) - (\cos(x) \cdot \sin(\pi))
\]

\[
= (\sin(x) \cdot \underline{\hspace{2em}}) - (\cos(x) \cdot 0)
\]

\[
= \underline{\hspace{2em}}
\]

**Explanation of Solution Steps:**

To prove the identity \(\sin(x - \pi) = -\sin(x)\), we use the subtraction formula for sine:

1. The subtraction formula is:
   \[
   \sin(x - y) = \sin(x)\cos(y) - \cos(x)\sin(y)
   \]

2. Plugging \(y = \pi\) into the formula:
   \[
   \sin(x - \pi) = \sin(x)\cos(\pi) - \cos(x)\sin(\pi)
   \]

3. We know:
   \(\cos(\pi) = -1\) and \(\sin(\pi) = 0\).

4. Substitute these values into the formula:
   \[
   \sin(x - \pi) = \sin(x)(-1) - \cos(x)(0)
   \]

5. Simplify:
   \[
   = -\sin(x) + 0
   = -\sin(x)
   \]

Thus, the identity is proven.
Transcribed Image Text:**Prove the identity.** \[ \sin(x - \pi) = -\sin(x) \] Use the Subtraction Formula for Sine, and then simplify. \[ \sin(x - \pi) = (\sin(x) \cdot \underline{\hspace{2em}}) - (\cos(x) \cdot \sin(\pi)) \] \[ = (\sin(x) \cdot \underline{\hspace{2em}}) - (\cos(x) \cdot 0) \] \[ = \underline{\hspace{2em}} \] **Explanation of Solution Steps:** To prove the identity \(\sin(x - \pi) = -\sin(x)\), we use the subtraction formula for sine: 1. The subtraction formula is: \[ \sin(x - y) = \sin(x)\cos(y) - \cos(x)\sin(y) \] 2. Plugging \(y = \pi\) into the formula: \[ \sin(x - \pi) = \sin(x)\cos(\pi) - \cos(x)\sin(\pi) \] 3. We know: \(\cos(\pi) = -1\) and \(\sin(\pi) = 0\). 4. Substitute these values into the formula: \[ \sin(x - \pi) = \sin(x)(-1) - \cos(x)(0) \] 5. Simplify: \[ = -\sin(x) + 0 = -\sin(x) \] Thus, the identity is proven.
Expert Solution
Step 1

Calculus homework question answer, step 1, image 1

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning