Prove the following. Focus on the information in the table. Given: AE = AB AC bisects EAB A MathBis.com LE =

Elementary Geometry For College Students, 7e
7th Edition
ISBN:9781337614085
Author:Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:Alexander, Daniel C.; Koeberlein, Geralyn M.
ChapterP: Preliminary Concepts
SectionP.CT: Test
Problem 1CT
icon
Related questions
icon
Concept explainers
Question
100%

Prove the following. Focus on the information in the table.

## Prove the following. Focus on the information in the table.

### Given:
- \( \overline{AE} \cong \overline{AB} \)
- \( \overline{AC} \) bisects \( \angle EAB \)
- \( \angle E \cong \angle B \)

### Prove:
- \( \overline{EC} \cong \overline{BC} \)

### Diagram:
The image shows a yellow quadrilateral \( AECB \), with line \( \overline{AC} \) bisecting \( \angle EAB \).

### Proof Table:

| Statement                                  | Reason                                |
|--------------------------------------------|---------------------------------------|
| 1. \( \overline{AE} \cong \overline{AB}; \) \( \overline{AC} \) bisects \( \angle EAB \); \( \angle E \cong \angle B \) | 1. Given                                  |
| 2. \( \angle EAC \cong \angle BAC \)       | 2. Definition of angle bisector        |
| 3. \( \triangle AEC \cong \triangle ABC \) | 3. AAS (Angle-Angle-Side) Criterion     |
| 4. \( \overline{EC} \cong \overline{BC} \) | 4. CPCTC (Corresponding Parts of Congruent Triangles are Congruent) |

### Legend:
- **Red dot**: Given
- **Purple dot**: Definition of segment bisector
- **Black dot**: Definition of angle bisector
- **Purple circle**: SAS (Side-Angle-Side)
- **Red circle**: AAS (Angle-Angle-Side)
- **Green circle**: ASA (Angle-Side-Angle)
- **Blue circle**: SSA (Side-Side-Angle)
- **Orange circle**: CPCTC (Corresponding Parts of Congruent Triangles are Congruent)

This proof demonstrates the congruence of segments \( \overline{EC} \) and \( \overline{BC} \) using geometric reasoning and properties of congruent triangles.
Transcribed Image Text:## Prove the following. Focus on the information in the table. ### Given: - \( \overline{AE} \cong \overline{AB} \) - \( \overline{AC} \) bisects \( \angle EAB \) - \( \angle E \cong \angle B \) ### Prove: - \( \overline{EC} \cong \overline{BC} \) ### Diagram: The image shows a yellow quadrilateral \( AECB \), with line \( \overline{AC} \) bisecting \( \angle EAB \). ### Proof Table: | Statement | Reason | |--------------------------------------------|---------------------------------------| | 1. \( \overline{AE} \cong \overline{AB}; \) \( \overline{AC} \) bisects \( \angle EAB \); \( \angle E \cong \angle B \) | 1. Given | | 2. \( \angle EAC \cong \angle BAC \) | 2. Definition of angle bisector | | 3. \( \triangle AEC \cong \triangle ABC \) | 3. AAS (Angle-Angle-Side) Criterion | | 4. \( \overline{EC} \cong \overline{BC} \) | 4. CPCTC (Corresponding Parts of Congruent Triangles are Congruent) | ### Legend: - **Red dot**: Given - **Purple dot**: Definition of segment bisector - **Black dot**: Definition of angle bisector - **Purple circle**: SAS (Side-Angle-Side) - **Red circle**: AAS (Angle-Angle-Side) - **Green circle**: ASA (Angle-Side-Angle) - **Blue circle**: SSA (Side-Side-Angle) - **Orange circle**: CPCTC (Corresponding Parts of Congruent Triangles are Congruent) This proof demonstrates the congruence of segments \( \overline{EC} \) and \( \overline{BC} \) using geometric reasoning and properties of congruent triangles.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Points, Lines and Planes
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, geometry and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Elementary Geometry For College Students, 7e
Elementary Geometry For College Students, 7e
Geometry
ISBN:
9781337614085
Author:
Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:
Cengage,
Elementary Geometry for College Students
Elementary Geometry for College Students
Geometry
ISBN:
9781285195698
Author:
Daniel C. Alexander, Geralyn M. Koeberlein
Publisher:
Cengage Learning