Prove the following statements. a. Let a € Z, then 3|(2a² + 1) if and only if 3 a. b. Let a € Z. If 2|(a² – 5) then 4|(a²-5). (Hint: For justification you might want to use Q5b). c. Let a € Z. If 2(a² − 1) then 8|(a² − 1). d. If a is an integer and a²la then a € {−1,0, 1}. e. Let a, b, c € Z if a² + b² = c² then 3|ab.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Prove the following statements.
a. Let a Z, then 3|(2a² + 1) if and only if 3 a.
b. Let a € Z. If 2(a²-5) then 4| (a²-5). (Hint: For justification you
might want to use Q5b).
c. Let a € Z. If 2(a² - 1) then 8|(a² — 1).
d. If a is an integer and a²la then a € {-1,0, 1}.
e. Let a, b, c Zif a² + b² = c² then 3|ab.
Transcribed Image Text:Prove the following statements. a. Let a Z, then 3|(2a² + 1) if and only if 3 a. b. Let a € Z. If 2(a²-5) then 4| (a²-5). (Hint: For justification you might want to use Q5b). c. Let a € Z. If 2(a² - 1) then 8|(a² — 1). d. If a is an integer and a²la then a € {-1,0, 1}. e. Let a, b, c Zif a² + b² = c² then 3|ab.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 25 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,