Prove that the following identity is true. sin4 t - cos4 t / sin2 t cos2 t = sec2 t - csc2 t
Prove that the following identity is true. sin4 t - cos4 t / sin2 t cos2 t = sec2 t - csc2 t
Trigonometry (11th Edition)
11th Edition
ISBN:9780134217437
Author:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Chapter1: Trigonometric Functions
Section: Chapter Questions
Problem 1RE:
1. Give the measures of the complement and the supplement of an angle measuring 35°.
Related questions
Question
Prove that the following identity is true.
sin4 t - cos4 t / sin2 t cos2 t = sec2 t - csc2 t
![The equation shown is:
\[
\frac{\sin^4 t - \cos^4 t}{\sin^2 t \cos^2 t} = \sec^2 t - \csc^2 t
\]
### Explanation:
This mathematical expression involves trigonometric identities:
1. **Numerator:** \(\sin^4 t - \cos^4 t\) is a difference of squares, which can be factored as \((\sin^2 t + \cos^2 t)(\sin^2 t - \cos^2 t)\). Using the Pythagorean identity, \(\sin^2 t + \cos^2 t = 1\), the numerator simplifies to \(\sin^2 t - \cos^2 t\).
2. **Denominator:** \(\sin^2 t \cos^2 t\) is a product of squares of the sine and cosine functions.
3. **Right Side of the Equation:** The expression \(\sec^2 t - \csc^2 t\) involves the secant and cosecant functions, which are reciprocals of cosine and sine, respectively. The identity can further be explored using \(\sec^2 t = 1/\cos^2 t\) and \(\csc^2 t = 1/\sin^2 t\).
### Educational Purpose:
This equation showcases the application of trigonometric identities and algebraic manipulation in simplifying and equating trigonometric expressions. It's a great example for exploring the connections between different trigonometric functions and identities.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fa0fd4670-9e52-488d-82d1-dba81b363ab0%2Fdb8c502a-10a3-483c-be6a-43f63e1101db%2Fq16uy69_processed.png&w=3840&q=75)
Transcribed Image Text:The equation shown is:
\[
\frac{\sin^4 t - \cos^4 t}{\sin^2 t \cos^2 t} = \sec^2 t - \csc^2 t
\]
### Explanation:
This mathematical expression involves trigonometric identities:
1. **Numerator:** \(\sin^4 t - \cos^4 t\) is a difference of squares, which can be factored as \((\sin^2 t + \cos^2 t)(\sin^2 t - \cos^2 t)\). Using the Pythagorean identity, \(\sin^2 t + \cos^2 t = 1\), the numerator simplifies to \(\sin^2 t - \cos^2 t\).
2. **Denominator:** \(\sin^2 t \cos^2 t\) is a product of squares of the sine and cosine functions.
3. **Right Side of the Equation:** The expression \(\sec^2 t - \csc^2 t\) involves the secant and cosecant functions, which are reciprocals of cosine and sine, respectively. The identity can further be explored using \(\sec^2 t = 1/\cos^2 t\) and \(\csc^2 t = 1/\sin^2 t\).
### Educational Purpose:
This equation showcases the application of trigonometric identities and algebraic manipulation in simplifying and equating trigonometric expressions. It's a great example for exploring the connections between different trigonometric functions and identities.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, trigonometry and related others by exploring similar questions and additional content below.Recommended textbooks for you

Trigonometry (11th Edition)
Trigonometry
ISBN:
9780134217437
Author:
Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:
PEARSON

Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781305652224
Author:
Charles P. McKeague, Mark D. Turner
Publisher:
Cengage Learning


Trigonometry (11th Edition)
Trigonometry
ISBN:
9780134217437
Author:
Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:
PEARSON

Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781305652224
Author:
Charles P. McKeague, Mark D. Turner
Publisher:
Cengage Learning


Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781337278461
Author:
Ron Larson
Publisher:
Cengage Learning