A to show that the set of all open intervals with endpoints in Q union {+infty, -infty} is countable, define a function f from that collection into the Cartesian product of Q union {+infty,- infty} with itself by mapping the interval (a,b) to the ordered pair (a,b). That function is one-to-one, so the image has the same cardinality as the original collection. Since the image is a subset of that Cartesian product, which is countable, the image is countable. Prove that the collection of all intervals in R with endpoints in Qu{too) is countable.
A to show that the set of all open intervals with endpoints in Q union {+infty, -infty} is countable, define a function f from that collection into the Cartesian product of Q union {+infty,- infty} with itself by mapping the interval (a,b) to the ordered pair (a,b). That function is one-to-one, so the image has the same cardinality as the original collection. Since the image is a subset of that Cartesian product, which is countable, the image is countable. Prove that the collection of all intervals in R with endpoints in Qu{too) is countable.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Show that the set of all [a,b] with a<=b is also countable
Show that the set of all (a,b] with a<b is also countable
Show that the set of all [a,b) with a<b is also countable
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,