Prove that if a = b (mod m) and if c = d (mod m), then ac = bd (mod m).
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![**Problem Statement:**
Prove that if \( a \equiv b \pmod{m} \) and if \( c \equiv d \pmod{m} \), then \( ac \equiv bd \pmod{m} \).
**Explanation:**
This statement concerns congruences in modular arithmetic. The notation \( a \equiv b \pmod{m} \) means that \( a \) and \( b \) give the same remainder when divided by \( m \) or, equivalently, \( m \) divides \( a - b \).
To prove the given statement, you need to demonstrate that if two pairs of numbers, \( a, b \) and \( c, d \), are equivalent modulo \( m \), then their products \( ac \) and \( bd \) are also equivalent modulo \( m \). This property is fundamental in number theory and is often used in cryptography, coding theory, and other areas involving modular arithmetic.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F30761ad5-6d22-4ff4-adb6-4f166a7ab52a%2F7bb3dfb8-85cb-4689-8773-31b0f33600fd%2F4v7dj9g.jpeg&w=3840&q=75)
Transcribed Image Text:**Problem Statement:**
Prove that if \( a \equiv b \pmod{m} \) and if \( c \equiv d \pmod{m} \), then \( ac \equiv bd \pmod{m} \).
**Explanation:**
This statement concerns congruences in modular arithmetic. The notation \( a \equiv b \pmod{m} \) means that \( a \) and \( b \) give the same remainder when divided by \( m \) or, equivalently, \( m \) divides \( a - b \).
To prove the given statement, you need to demonstrate that if two pairs of numbers, \( a, b \) and \( c, d \), are equivalent modulo \( m \), then their products \( ac \) and \( bd \) are also equivalent modulo \( m \). This property is fundamental in number theory and is often used in cryptography, coding theory, and other areas involving modular arithmetic.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
Step 1: Definition
That is there exist an integer k such that
Step by step
Solved in 3 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)