Prove that if a, 6, and c are positive real numbers with ab = c, then a < yc or 6 < Vc.
Prove that if a, 6, and c are positive real numbers with ab = c, then a < yc or 6 < Vc.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
can someone answer this asap, please
![**Prove that if \(a\), \(b\), and \(c\) are positive real numbers with \(ab = c\), then \(a \leq \sqrt{c}\) or \(b \leq \sqrt{c}\).**
To prove this, let's analyze the given condition \(ab = c\).
1. Consider the contrapositive: suppose both \(a > \sqrt{c}\) and \(b > \sqrt{c}\).
2. Then we have:
\[
a > \sqrt{c} \quad \text{and} \quad b > \sqrt{c}
\]
3. Multiplying these inequalities gives:
\[
ab > \sqrt{c} \cdot \sqrt{c} = c
\]
4. However, this contradicts the given condition \(ab = c\).
5. Therefore, it must be the case that \(a \leq \sqrt{c}\) or \(b \leq \sqrt{c}\).
This proves the required inequality.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fba208968-0ccc-4a94-8921-5ea260cefe19%2Fd421eb7e-ee28-403e-bff9-23787d819f25%2Fro9volg_processed.png&w=3840&q=75)
Transcribed Image Text:**Prove that if \(a\), \(b\), and \(c\) are positive real numbers with \(ab = c\), then \(a \leq \sqrt{c}\) or \(b \leq \sqrt{c}\).**
To prove this, let's analyze the given condition \(ab = c\).
1. Consider the contrapositive: suppose both \(a > \sqrt{c}\) and \(b > \sqrt{c}\).
2. Then we have:
\[
a > \sqrt{c} \quad \text{and} \quad b > \sqrt{c}
\]
3. Multiplying these inequalities gives:
\[
ab > \sqrt{c} \cdot \sqrt{c} = c
\]
4. However, this contradicts the given condition \(ab = c\).
5. Therefore, it must be the case that \(a \leq \sqrt{c}\) or \(b \leq \sqrt{c}\).
This proves the required inequality.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
Step 1
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)