Prove that En-1 (nt) converges uniformly on S = [0, 1]. x2n =1 (n+x)²

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Real Analysis 2 Please follow similar sample in 2nd photo to solve problem
x
ex
& fn(x) = x +n for all x 20 (s = [0, 0))
Show for f phoise.
S where f =0
a.
b. Show frf Unif
c. Show for * > f Chrif.
Solna @tix XES =
x
= x+n
Notice fn (x) = x+n, So
(in fri (x)
130
goal
on
=
xtr
#2>0:
X+0
on
[0₁2]
b. Show for f urif. on
>
By AP. I NE N sit / x ¾/2
So 2+N </N LE· Fix X € [0₁2].
L
X 스
x+n
on S.
[0, ∞). Show fr (x) →
2
Then X+n = 2+ (So fn(x) = fm (2))
Assume n>x. Then (fn (x) = f(x)) = /*+₁ -0
2¹
LE
스
2f0
2+1
| fn(x) = f(x) | < E
-
-02E
२६
Cam
Xnº
n->∞ x+n'
f
[0,2]. fix E70
fo is mor
(>N)
if n is large enough
SE
2 & 2² ≤ ¾N CE
스
2+n
2+1
Transcribed Image Text:x ex & fn(x) = x +n for all x 20 (s = [0, 0)) Show for f phoise. S where f =0 a. b. Show frf Unif c. Show for * > f Chrif. Solna @tix XES = x = x+n Notice fn (x) = x+n, So (in fri (x) 130 goal on = xtr #2>0: X+0 on [0₁2] b. Show for f urif. on > By AP. I NE N sit / x ¾/2 So 2+N </N LE· Fix X € [0₁2]. L X 스 x+n on S. [0, ∞). Show fr (x) → 2 Then X+n = 2+ (So fn(x) = fm (2)) Assume n>x. Then (fn (x) = f(x)) = /*+₁ -0 2¹ LE 스 2f0 2+1 | fn(x) = f(x) | < E - -02E २६ Cam Xnº n->∞ x+n' f [0,2]. fix E70 fo is mor (>N) if n is large enough SE 2 & 2² ≤ ¾N CE 스 2+n 2+1
x2n
1. Prove that Σn-1 (n) converges uniformly on S = [0, 1].
Transcribed Image Text:x2n 1. Prove that Σn-1 (n) converges uniformly on S = [0, 1].
Expert Solution
Ideas

Recall the M-test for uniform convergence.

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,