Prove that (a) IP{x) = (21 – 1)xP,-1(x) – (I – 1)P;- 2(x), (b) xP(x) – P; -1(x) = IP{{x), (c) P{(x) – xPi-1(x) = IP;-1(x), (d) (1 – x²)P(x) = IP,-1(x) – lxP{x), %3D (e) (21 + 1)P(x) = Pi+1(x) – P-1(x). %3D

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
i need the answer quickly
Prove that
(a) IP(x) = (21 – 1)xP-1(x) – (I – 1)P¡- 2(x),
(b) xP{(x) – Pi- 1(x) = IP{x),
(c) P{(x) - xP-1(x) = IP;-1(x),
%3D
(d) (1 – x²)P{(x) = IP,-1(x) – IxP{x),
%3D
|
(e) (21 + 1)P(x) = P+1(x) – Pi-1(x).
%3D
Transcribed Image Text:Prove that (a) IP(x) = (21 – 1)xP-1(x) – (I – 1)P¡- 2(x), (b) xP{(x) – Pi- 1(x) = IP{x), (c) P{(x) - xP-1(x) = IP;-1(x), %3D (d) (1 – x²)P{(x) = IP,-1(x) – IxP{x), %3D | (e) (21 + 1)P(x) = P+1(x) – Pi-1(x). %3D
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,