Prove L{a coskt}= -at S+a

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
(1) can you explain in DETAIL how did you come up with this solution coz i'm going to make a script out of it
1
Ans 1:- Prove
L{Et coskt}=
S+a
We Know that
Then
L
ast eat coskt dt
coskt
st-at
• coskt dt
olsta)t
. coskt dt
-- (1)
Lat
--(S+a)t
e
- (2)
I=
•coskt dt
-(Stajt
Coskt
by usng fkrmula indegadion f two functions
- (sta)t
Lim Coskt. e
- Ceso. e
(s+a}t
- Jename) t
SEksimet) e
-(Sta)
-(Stajt
Lim
coskt .e
Ix1]
Sta
sinkt. esta)t dt
S+a
if
Um ft)=0
and g)
We know that
is
bounde d
then
coft
-(sta)t
Lim e
Нете
- Lim
on IR. Icoskt|< |
for all t eIR
And
coskt
TS
beundo d
Transcribed Image Text:1 Ans 1:- Prove L{Et coskt}= S+a We Know that Then L ast eat coskt dt coskt st-at • coskt dt olsta)t . coskt dt -- (1) Lat --(S+a)t e - (2) I= •coskt dt -(Stajt Coskt by usng fkrmula indegadion f two functions - (sta)t Lim Coskt. e - Ceso. e (s+a}t - Jename) t SEksimet) e -(Sta) -(Stajt Lim coskt .e Ix1] Sta sinkt. esta)t dt S+a if Um ft)=0 and g) We know that is bounde d then coft -(sta)t Lim e Нете - Lim on IR. Icoskt|< | for all t eIR And coskt TS beundo d
Hhen
-(sta)t
coskt. e
Lim
Then
K Se
:(Sta)t
• Sinkt dt
Sta
Sta
- (Sta)t
.e
(스Sinkt)
(Sta)E
{(ankt,
) I=
K
S+a
Sta
- (sta)
Sinkt. ē(sta)t
s'no. e -
Sta
Sta
Sta
K. coskt .
-(stA)
FP
K
K
(Sta)t
e
Ceset dt
Sta
using (3)
Since, Sinkt rs also
bounded on IR
|Sinktl $1 fer all &EIR
- I=
Sta
(s+a)2-
I =
S+a
> I (1+ ) * a
S+a
(S+a)2
Sta
(s+4)2
-) I =
(S+a)
6+a)
From 1) and (2), we get
Lf ent cosikt} =
S+a
Hence proves
(S+a)? + 1e2
Transcribed Image Text:Hhen -(sta)t coskt. e Lim Then K Se :(Sta)t • Sinkt dt Sta Sta - (Sta)t .e (스Sinkt) (Sta)E {(ankt, ) I= K S+a Sta - (sta) Sinkt. ē(sta)t s'no. e - Sta Sta Sta K. coskt . -(stA) FP K K (Sta)t e Ceset dt Sta using (3) Since, Sinkt rs also bounded on IR |Sinktl $1 fer all &EIR - I= Sta (s+a)2- I = S+a > I (1+ ) * a S+a (S+a)2 Sta (s+4)2 -) I = (S+a) 6+a) From 1) and (2), we get Lf ent cosikt} = S+a Hence proves (S+a)? + 1e2
Expert Solution
steps

Step by step

Solved in 7 steps with 7 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,