Prove L{a coskt}= -at S+a
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
(1) can you explain in DETAIL how did you come up with this solution coz i'm going to make a script out of it
![1
Ans 1:- Prove
L{Et coskt}=
S+a
We Know that
Then
L
ast eat coskt dt
coskt
st-at
• coskt dt
olsta)t
. coskt dt
-- (1)
Lat
--(S+a)t
e
- (2)
I=
•coskt dt
-(Stajt
Coskt
by usng fkrmula indegadion f two functions
- (sta)t
Lim Coskt. e
- Ceso. e
(s+a}t
- Jename) t
SEksimet) e
-(Sta)
-(Stajt
Lim
coskt .e
Ix1]
Sta
sinkt. esta)t dt
S+a
if
Um ft)=0
and g)
We know that
is
bounde d
then
coft
-(sta)t
Lim e
Нете
- Lim
on IR. Icoskt|< |
for all t eIR
And
coskt
TS
beundo d](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fe7aeab9f-45d2-48ed-b835-82ea42b1bf63%2F6c42229b-e715-4518-8920-e03a16026161%2Ffea1p2e_processed.jpeg&w=3840&q=75)
Transcribed Image Text:1
Ans 1:- Prove
L{Et coskt}=
S+a
We Know that
Then
L
ast eat coskt dt
coskt
st-at
• coskt dt
olsta)t
. coskt dt
-- (1)
Lat
--(S+a)t
e
- (2)
I=
•coskt dt
-(Stajt
Coskt
by usng fkrmula indegadion f two functions
- (sta)t
Lim Coskt. e
- Ceso. e
(s+a}t
- Jename) t
SEksimet) e
-(Sta)
-(Stajt
Lim
coskt .e
Ix1]
Sta
sinkt. esta)t dt
S+a
if
Um ft)=0
and g)
We know that
is
bounde d
then
coft
-(sta)t
Lim e
Нете
- Lim
on IR. Icoskt|< |
for all t eIR
And
coskt
TS
beundo d

Transcribed Image Text:Hhen
-(sta)t
coskt. e
Lim
Then
K Se
:(Sta)t
• Sinkt dt
Sta
Sta
- (Sta)t
.e
(스Sinkt)
(Sta)E
{(ankt,
) I=
K
S+a
Sta
- (sta)
Sinkt. ē(sta)t
s'no. e -
Sta
Sta
Sta
K. coskt .
-(stA)
FP
K
K
(Sta)t
e
Ceset dt
Sta
using (3)
Since, Sinkt rs also
bounded on IR
|Sinktl $1 fer all &EIR
- I=
Sta
(s+a)2-
I =
S+a
> I (1+ ) * a
S+a
(S+a)2
Sta
(s+4)2
-) I =
(S+a)
6+a)
From 1) and (2), we get
Lf ent cosikt} =
S+a
Hence proves
(S+a)? + 1e2
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 7 steps with 7 images

Recommended textbooks for you

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,

