Protons and neutrons (together called nucleons) are held together in the nucleus of an atom by a force called the strong force. At very small separations, the strong force between two nucleons is larger than the repulsive electrical force between two protons--hence its name. But the strong force quickly weakens as the distance between the protons increases. A well-established model for the potential energy of two nucleons interacting via the strong force is U=U0[1−e−x/x0] where x is the distance between the centers of the two nucleons, x0 is a constant having the value x0 = 2.0 × 10−15 m, and U0 = 6.0 × 10−11 J. Quantum effects are essential for a proper understanding of nucleons, but let us innocently consider two neutrons as if they were small, hard, electrically neutral spheres of mass 1.67 × 10−27 kg and diameter 1.0 × 10−15 m. Suppose you hold two neutrons 2.3 × 10−15 m apart, measured between their centers, then release them.What is the speed of each neutron as they crash together? Keep in mind that both neutrons are moving. Express your answer with the appropriate units.

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
Topic Video
Question

Protons and neutrons (together called nucleons) are held together in the nucleus of an atom by a force called the strong force. At very small separations, the strong force between two nucleons is larger than the repulsive electrical force between two protons--hence its name. But the strong force quickly weakens as the distance between the protons increases. A well-established model for the potential energy of two nucleons interacting via the strong force is

U=U0[1−e−x/x0]

where x is the distance between the centers of the two nucleons, x0 is a constant having the value x0 = 2.0 × 10−15 m, and U0 = 6.0 × 10−11 J.

Quantum effects are essential for a proper understanding of nucleons, but let us innocently consider two neutrons as if they were small, hard, electrically neutral spheres of mass 1.67 ×
10−27 kg and diameter 1.0 × 10−15 m. Suppose you hold two neutrons 2.3 × 10−15 m apart, measured between their centers, then release them.What is the speed of each neutron as they crash together? Keep in mind that both neutrons are moving.
Express your answer with the appropriate units.

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 2 images

Blurred answer
Knowledge Booster
Mechanical Work done
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON