Proposition 4.1.2. If ƒ : A → Rn satisfies the lower-Lipschitz condition on E, i.e., if there exists of some c> 0 such that c|x − y| ≤ f(x) = f(y) for all x, y ≤ E, then f is 1-1 on E, and hence its inverse function g = f-1 exists on f(E). Moreover, g: f(E) → R is Lipschitz on f(E).

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%

Need help to prove the following.

**Proposition 4.1.2**: If \( f : A \rightarrow \mathbb{R}^n \) satisfies the lower-Lipschitz condition on \( E \), i.e., if there exists some \( c > 0 \) such that

\[ c|x - y| \leq |f(x) - f(y)| \quad \text{for all } x, y \in E, \]

then \( f \) is 1-1 on \( E \), and hence its inverse function \( g = f^{-1} \) exists on \( f(E) \). Moreover, \( g : f(E) \rightarrow \mathbb{R}^n \) is Lipschitz on \( f(E) \).
Transcribed Image Text:**Proposition 4.1.2**: If \( f : A \rightarrow \mathbb{R}^n \) satisfies the lower-Lipschitz condition on \( E \), i.e., if there exists some \( c > 0 \) such that \[ c|x - y| \leq |f(x) - f(y)| \quad \text{for all } x, y \in E, \] then \( f \) is 1-1 on \( E \), and hence its inverse function \( g = f^{-1} \) exists on \( f(E) \). Moreover, \( g : f(E) \rightarrow \mathbb{R}^n \) is Lipschitz on \( f(E) \).
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,