Proof: Let z be a continuous random variable o² = E[(x-μ)²] = (x-μ)² f(x)dr 08 Cl-ka 8 - ko FL " + ko rutko (2-0)²1 (2) de + f (x-µ)²1(2)dz + (x-μ)² (2-14) -ka μ+ko
Proof: Let z be a continuous random variable o² = E[(x-μ)²] = (x-μ)² f(x)dr 08 Cl-ka 8 - ko FL " + ko rutko (2-0)²1 (2) de + f (x-µ)²1(2)dz + (x-μ)² (2-14) -ka μ+ko
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
I’m having issues understanding the first 2 lines of the proof, variance, E and how it gave the integration . Can you pls write a preliminary explaining those? Thanks.
![### Chebyshev’s Inequality Proof
**Statement:**
\[ i.e \quad P(|x - \mu| \geq k \sigma) \leq \frac{1}{k^2} \]
**Proof:**
Let \( x \) be a continuous random variable.
\[
\sigma^2 = E[(x - \mu)^2]
\]
\[
= \int_{-\infty}^{\infty} (x - \mu)^2 f(x) \, dx
\]
The range is divided into three parts: from \(-\infty\) to \(\mu - k\sigma\), from \(\mu - k\sigma\) to \(\mu + k\sigma\), and from \(\mu + k\sigma\) to \(+\infty\).
\[
= \int_{-\infty}^{\mu - k\sigma} (x - \mu)^2 f(x) \, dx + \int_{\mu-k\sigma}^{\mu+k\sigma} (x-\mu)^2 f(x) \, dx + \int_{\mu+k\sigma}^{\infty} (x-\mu)^2 f(x) \, dx
\]](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F79599c56-a340-49a0-b0ff-829b3947a798%2Fde61d447-9e7d-4eb2-b87e-7c7e48146bdd%2Fb3ae1c_processed.jpeg&w=3840&q=75)
Transcribed Image Text:### Chebyshev’s Inequality Proof
**Statement:**
\[ i.e \quad P(|x - \mu| \geq k \sigma) \leq \frac{1}{k^2} \]
**Proof:**
Let \( x \) be a continuous random variable.
\[
\sigma^2 = E[(x - \mu)^2]
\]
\[
= \int_{-\infty}^{\infty} (x - \mu)^2 f(x) \, dx
\]
The range is divided into three parts: from \(-\infty\) to \(\mu - k\sigma\), from \(\mu - k\sigma\) to \(\mu + k\sigma\), and from \(\mu + k\sigma\) to \(+\infty\).
\[
= \int_{-\infty}^{\mu - k\sigma} (x - \mu)^2 f(x) \, dx + \int_{\mu-k\sigma}^{\mu+k\sigma} (x-\mu)^2 f(x) \, dx + \int_{\mu+k\sigma}^{\infty} (x-\mu)^2 f(x) \, dx
\]
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)