Proof: Let z be a continuous random variable o² = E[(x-μ)²] = (x-μ)² f(x)dr 08 Cl-ka 8 - ko FL " + ko rutko (2-0)²1 (2) de + f (x-µ)²1(2)dz + (x-μ)² (2-14) -ka μ+ko

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
I’m having issues understanding the first 2 lines of the proof, variance, E and how it gave the integration. Can you pls write a preliminary explaining those? Thanks.
### Chebyshev’s Inequality Proof

**Statement:**

\[ i.e \quad P(|x - \mu| \geq k \sigma) \leq \frac{1}{k^2} \]

**Proof:**

Let \( x \) be a continuous random variable.

\[
\sigma^2 = E[(x - \mu)^2]
\]

\[
= \int_{-\infty}^{\infty} (x - \mu)^2 f(x) \, dx
\]

The range is divided into three parts: from \(-\infty\) to \(\mu - k\sigma\), from \(\mu - k\sigma\) to \(\mu + k\sigma\), and from \(\mu + k\sigma\) to \(+\infty\).

\[
= \int_{-\infty}^{\mu - k\sigma} (x - \mu)^2 f(x) \, dx + \int_{\mu-k\sigma}^{\mu+k\sigma} (x-\mu)^2 f(x) \, dx + \int_{\mu+k\sigma}^{\infty} (x-\mu)^2 f(x) \, dx
\]
Transcribed Image Text:### Chebyshev’s Inequality Proof **Statement:** \[ i.e \quad P(|x - \mu| \geq k \sigma) \leq \frac{1}{k^2} \] **Proof:** Let \( x \) be a continuous random variable. \[ \sigma^2 = E[(x - \mu)^2] \] \[ = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) \, dx \] The range is divided into three parts: from \(-\infty\) to \(\mu - k\sigma\), from \(\mu - k\sigma\) to \(\mu + k\sigma\), and from \(\mu + k\sigma\) to \(+\infty\). \[ = \int_{-\infty}^{\mu - k\sigma} (x - \mu)^2 f(x) \, dx + \int_{\mu-k\sigma}^{\mu+k\sigma} (x-\mu)^2 f(x) \, dx + \int_{\mu+k\sigma}^{\infty} (x-\mu)^2 f(x) \, dx \]
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,