Project Problem 2: Prove that Trn: M₁, (R) → R is a linear functional. Example 3) Consider V = P, the set of all polynomials with real coefficients. A linear functional on 1 P is given by integration, p(f) = f(x)dx, where ƒ is a polynomial. A more general form of a linear 0 functional on is given in the next proposition. Proposition 1.3. Let g R → R be a continuous function. Consider P → R given by q(f) =

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Please solve problem 2
# Linear Functionals

## Definition 1.1
Let \( V \) be a vector space over \( \mathbb{R} \). A **linear functional** on \( V \) is a linear map \( \varphi : V \to \mathbb{R} \).

### Examples:
**Example 1**: Consider \( V = \mathbb{R}^n \), and \( \varphi : \mathbb{R}^n \to \mathbb{R} \) given by
\[ \varphi(\mathbf{v}) = x_1 + x_2 + \cdots + x_n \]
where \( \mathbf{v} = (x_1, x2, \cdots, x_n) \). Then \( \varphi \) is a linear functional.

The next proposition provides a more general example of a linear functional on \( \mathbb{R}^n \).

**Proposition 1.2**: Let \( a_1, a_2, \cdots, a_n \) be fixed real numbers. Let \( \varphi : \mathbb{R}^n \to \mathbb{R} \) be given by 
\[ \varphi(\mathbf{v}) = a_1 x_1 + a_2 x_2 + \cdots + a_n x_n \]
where \( \mathbf{v} = (x_1, x_2, \cdots, x_n) \). Then \( \varphi \) is a linear functional.

**Project Problem 1**: Prove the above Proposition 1.2.

**Example 2**: Consider \( V = M_2(\mathbb{R}) \), where \( M_2(\mathbb{R}) \) denotes the set of all \( 2 \times 2 \) matrices with real entries.

Let \( \text{Tr} : M_2(\mathbb{R}) \to \mathbb{R} \) be given by 
\[ \text{Tr} \left( \begin{matrix} a & b \\ c & d \end{matrix} \right) = a + d \]

Then Tr is a linear functional on \( M_2(\mathbb{R}) \), called the **Trace**. More generally, we can define a similar linear
Transcribed Image Text:# Linear Functionals ## Definition 1.1 Let \( V \) be a vector space over \( \mathbb{R} \). A **linear functional** on \( V \) is a linear map \( \varphi : V \to \mathbb{R} \). ### Examples: **Example 1**: Consider \( V = \mathbb{R}^n \), and \( \varphi : \mathbb{R}^n \to \mathbb{R} \) given by \[ \varphi(\mathbf{v}) = x_1 + x_2 + \cdots + x_n \] where \( \mathbf{v} = (x_1, x2, \cdots, x_n) \). Then \( \varphi \) is a linear functional. The next proposition provides a more general example of a linear functional on \( \mathbb{R}^n \). **Proposition 1.2**: Let \( a_1, a_2, \cdots, a_n \) be fixed real numbers. Let \( \varphi : \mathbb{R}^n \to \mathbb{R} \) be given by \[ \varphi(\mathbf{v}) = a_1 x_1 + a_2 x_2 + \cdots + a_n x_n \] where \( \mathbf{v} = (x_1, x_2, \cdots, x_n) \). Then \( \varphi \) is a linear functional. **Project Problem 1**: Prove the above Proposition 1.2. **Example 2**: Consider \( V = M_2(\mathbb{R}) \), where \( M_2(\mathbb{R}) \) denotes the set of all \( 2 \times 2 \) matrices with real entries. Let \( \text{Tr} : M_2(\mathbb{R}) \to \mathbb{R} \) be given by \[ \text{Tr} \left( \begin{matrix} a & b \\ c & d \end{matrix} \right) = a + d \] Then Tr is a linear functional on \( M_2(\mathbb{R}) \), called the **Trace**. More generally, we can define a similar linear
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,