Program 2.3. MATLAB function for uniform quantization encoding. function [ I, pq]= biquant (NoBits, Xmin, Xmax,value) % function pq = biquant (NoBits, Xmin, Xmax, value) % This routine is created for simulation of uniform quantizer. % NOBits: number of bits used in quantization. % Xmax: overload value. % Xmin: minimum value % value: input to be quantized. % pq: output of quantized value % I: coded integer index L=2^NoBits; delta=(Xmax- Xmin)/L; I=round ((value-Xmin)/delta); if ( I==L) I=I-1; end if I<0 I=0; end pq=Xmin+I*delta; Program 2.4. MATLAB function for uniform quantization decoding. function pq =biqtdec(NoBits,Xmin,Xmax, I) % function pq = biqtdec(NoBits, Xmin, Xmax, I) % This routine recover the quantized value. % NOBits: number of bits used in quantization. % Xmax: overload value % Xmin: minimum value % pq: output of quantized value % I: coded integer index L=2°NoBits; delta=(Xmax- Xmin)/L; pq=Xmin+I*delta; Program 2.5. MATLAB function for calculation of signal-to-quantization noise ratio. function snr - calcsnr(speech, qspeech) % function snr = calcsnr(speech, qspeech) % this routine is created for calculation of SNR % speech: original speech waveform. % qspeech: quantized speech. % snr: output SNR in dB. qerr = speech-qspeech; snr = 10*1og10(s um(speech.*speech)/sum(qerr.*qerr))

Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
icon
Related questions
Question
Given an original speech segment “speech.dat” sampled at 8000 Hz with each sample encoded in 16 bits, use Programs 2.3–2.5 and modify Program 2.2 to quantize the speech segment using 3–15 bits, respectively. The SNR in dB must be measured for each quantization. MATLAB function: “sound(xmax(abs(x)),fs)” can be used to evaluate sound quality, where “x” is the speech segment while “fs” is the sampling rate of 8000 Hz. In this project, create a plot of the measured SNR (dB) versus the number of bits and discuss the effect of the sound quality. For comparisons, plot the original speech and the quantized one using 3, 8, and 15 bits.
(a) Program 2.2 MATLAB program for Example 2.14.
%Example 2.14
clear all; close all
disp('load speech: We');
load we.dat
sig = we;
fs=8000;
% Load speech data at the current folder
% Provided by the instructor
% Sampling rate
% Length of signal vector
% Sampling period
lg=length(sig);
T=1/fs;
Co
CHAPTER 2 SIGNAL SAMPLING AND QUANTIZATION
EXAMPLE 2.14–CONT'D
t=[0:1:lg-1]*T;
sig=4.5*sig/max(abs(sig));
Xmax = max(abs(sig));
Xrms = sqrt( sum(sig .* sig) / length(sig))
disp('Xrms/Xmax’)
k=Xrms/Xmax
% Time instants in second
% Normalizes speech in the range from -4.5 to 4
% Maximum amplitude
% RMS value
disp('20*log10(k)=>');
k = 20*log10(k)
bits = input('input number of bits =>');
lg = length(sig);
for x=1:lg
[Index(x) pq]=biquant(bits, -5,5, sig(x));
%Output quantized index.
end
% transmitted
% received
for x=1:lg
qsig(x) = biqtdec(bits, -5,5, Index(x));
end
%Recover the quantized value
%Calculate the quantized error
qerr = sig-qsig;
subplot(3,1,1);plot(t,sig);
ylabel('Original speech');title(we.dat: we');
subplot(3,1,2);stairs(t, qsig);grid
ylabel('Quantized speech')
subplot(3,1,3);stairs(t, qerr);grid
ylabel('Quantized error’)
xlabel('Time (sec.)');axis([0 0.25 –1 1]);
disp('signal to noise ratio due to quantization noise')
snr(sig,qsig)
% Signal to noise ratio in dB:
% sig = original signal vector,
% qsig =quantized signal vector
Transcribed Image Text:(a) Program 2.2 MATLAB program for Example 2.14. %Example 2.14 clear all; close all disp('load speech: We'); load we.dat sig = we; fs=8000; % Load speech data at the current folder % Provided by the instructor % Sampling rate % Length of signal vector % Sampling period lg=length(sig); T=1/fs; Co CHAPTER 2 SIGNAL SAMPLING AND QUANTIZATION EXAMPLE 2.14–CONT'D t=[0:1:lg-1]*T; sig=4.5*sig/max(abs(sig)); Xmax = max(abs(sig)); Xrms = sqrt( sum(sig .* sig) / length(sig)) disp('Xrms/Xmax’) k=Xrms/Xmax % Time instants in second % Normalizes speech in the range from -4.5 to 4 % Maximum amplitude % RMS value disp('20*log10(k)=>'); k = 20*log10(k) bits = input('input number of bits =>'); lg = length(sig); for x=1:lg [Index(x) pq]=biquant(bits, -5,5, sig(x)); %Output quantized index. end % transmitted % received for x=1:lg qsig(x) = biqtdec(bits, -5,5, Index(x)); end %Recover the quantized value %Calculate the quantized error qerr = sig-qsig; subplot(3,1,1);plot(t,sig); ylabel('Original speech');title(we.dat: we'); subplot(3,1,2);stairs(t, qsig);grid ylabel('Quantized speech') subplot(3,1,3);stairs(t, qerr);grid ylabel('Quantized error’) xlabel('Time (sec.)');axis([0 0.25 –1 1]); disp('signal to noise ratio due to quantization noise') snr(sig,qsig) % Signal to noise ratio in dB: % sig = original signal vector, % qsig =quantized signal vector
Program 2.3. MATLAB function for uniform quantization encoding.
function [ I, pq]= biquant(NoBits,Xmin, Xmax,value)
% function pq = biquant(NoBits, Xmin, Xmax, value)
% This routine is created for simulation of uniform quantizer.
% NoBits: number of bits used in quantization.
% Xmax: overload value.
% Xmin: minimum value
% value: input to be quantized.
% pq: output of quantized value
% I: coded integer index
L=2^NoBits;
delta=(Xmax - Xmin)/L;
I=round ((value-Xmin)/delta);
if ( I==L)
I=I-1;
end
if I<0
I=0;
end
pq=Xmin+I*delta;
Program 2.4. MATLAB function for uniform quantization decoding.
function pq =biqtdec(NoBits,Xmin,Xmax,I)
% function pq = biqtdec(NoBits,Xmin, Xmax, I)
% This routine recover the quantized value.
%
% NoBits: number of bits used in quantization.
% Xmax: overload value
% Xmin: minimum value
% pq: output of quantized value
% I: coded integer index
L=2°NoBits;
delta=(Xmax - Xmin)/L;
pq=Xmin+I*delta;
Program 2.5. MATLAB function for calculation of signal-to-quantization noise ratio.
function snr = calcsnr(speech, qspeech)
% function snr = calcsnr(speech, qspeech)
% this routine is created for calculation of SNR
% speech: original speech waveform.
% qspeech: quantized speech.
% snr: output SNR in dB.
qerr = speech-qspeech;
snr = 10*1og10(s um(speech.*speech)/sum(qerr.*qerr))
Transcribed Image Text:Program 2.3. MATLAB function for uniform quantization encoding. function [ I, pq]= biquant(NoBits,Xmin, Xmax,value) % function pq = biquant(NoBits, Xmin, Xmax, value) % This routine is created for simulation of uniform quantizer. % NoBits: number of bits used in quantization. % Xmax: overload value. % Xmin: minimum value % value: input to be quantized. % pq: output of quantized value % I: coded integer index L=2^NoBits; delta=(Xmax - Xmin)/L; I=round ((value-Xmin)/delta); if ( I==L) I=I-1; end if I<0 I=0; end pq=Xmin+I*delta; Program 2.4. MATLAB function for uniform quantization decoding. function pq =biqtdec(NoBits,Xmin,Xmax,I) % function pq = biqtdec(NoBits,Xmin, Xmax, I) % This routine recover the quantized value. % % NoBits: number of bits used in quantization. % Xmax: overload value % Xmin: minimum value % pq: output of quantized value % I: coded integer index L=2°NoBits; delta=(Xmax - Xmin)/L; pq=Xmin+I*delta; Program 2.5. MATLAB function for calculation of signal-to-quantization noise ratio. function snr = calcsnr(speech, qspeech) % function snr = calcsnr(speech, qspeech) % this routine is created for calculation of SNR % speech: original speech waveform. % qspeech: quantized speech. % snr: output SNR in dB. qerr = speech-qspeech; snr = 10*1og10(s um(speech.*speech)/sum(qerr.*qerr))
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 2 images

Blurred answer
Knowledge Booster
Fast Fourier Transform Concepts
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Database System Concepts
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education