Problem4 (Use the Formula sheet and the Tables to answer this question, You should not use Mega-Stat) The output below represents Descriptive statistics and ANOVA a random samples of six students in 3 schools produced the following GMAT scores To test the claim that there are significant differences between the averages of 3 GMAT populations scores Descriptive statistics School 1 School 2 School 3 count 6 6 6 mean 646.67 606.67 523.33 sample variance 2,266.67 4,746.67 1,266.67 sample standard deviation 47.61 68.90 35.59 minimum 580 510 490 maximum 710 700 590 range 130 190 100 normal curve GOF p-value .4142 .4142 .1573 chi-square(df=1) 0.67 0.67 2.00 E 1.50 1.50 1.50 O(-0.67) 1 2 1 O(+0.00) 2 1 3 O(+0.67) 1 2 1 O(inf.) 2 1 1 One factor ANOVA Mean n Std. Dev 646.7 6 47.61 School 1 606.7 6 68.90 School 2 523.3 6 35.59 School 3 592.2 18 72.32 Total ANOVA table Source SS df MS F p-value Treatment 47,511.11 2 ---------- ------ .0032 Error 41,400.00 ------ 2,760.000 Total 88,911.11 17 Tukey simultaneous comparison t-values (d.f. = 15) School 3 School 2 School 1 523.3 606.7 646.7 School 3 523.3 School 2 606.7 2.75 School 1 646.7 4.07 1.32 critical values for experimentwise error rate: 0.05 2.60 0.01 3.42 Use the above output to answer the following questions: Complete the ANOVA table Write the null Ho and alternative hypotheses H1 Use Descriptive statistics output to check verify normality of the 3 populations Use Descriptive statistics output to check constant variance (equal of the population variances)
Problem4 (Use the Formula sheet and the Tables to answer this question, You should not use Mega-Stat)
The output below represents
To test the claim that there are significant differences between the averages of 3 GMAT populations scores
Descriptive statistics |
|
|||||||||
|
||||||||||
|
School 1 |
School 2 |
School 3 |
|
||||||
count |
6 |
6 |
6 |
|
||||||
mean |
646.67 |
606.67 |
523.33 |
|
||||||
sample variance |
2,266.67 |
4,746.67 |
1,266.67 |
|
||||||
sample standard deviation |
47.61 |
68.90 |
35.59 |
|
||||||
minimum |
580 |
510 |
490 |
|
||||||
maximum |
710 |
700 |
590 |
|
||||||
|
130 |
190 |
100 |
|
||||||
|
||||||||||
normal curve GOF |
|
|||||||||
p-value |
.4142 |
.4142 |
.1573 |
|
||||||
chi-square(df=1) |
0.67 |
0.67 |
2.00 |
|
||||||
E |
1.50 |
1.50 |
1.50 |
|
||||||
O(-0.67) |
1 |
2 |
1 |
|
||||||
O(+0.00) |
2 |
1 |
3 |
|
||||||
O(+0.67) |
1 |
2 |
1 |
|
||||||
O(inf.) |
2 |
1 |
1 |
|
||||||
One factor ANOVA |
||||||||||
|
Mean |
n |
Std. Dev |
|
||||||
646.7 |
6 |
47.61 |
School 1 |
|||||||
606.7 |
6 |
68.90 |
School 2 |
|||||||
523.3 |
6 |
35.59 |
School 3 |
|||||||
|
592.2 |
18 |
72.32 |
Total |
||||||
|
||||||||||
ANOVA table |
|
|||||||||
Source |
SS |
df |
MS |
F |
p-value |
|||||
Treatment |
47,511.11 |
2 |
---------- |
------ |
.0032 |
|||||
Error |
41,400.00 |
------ |
2,760.000 |
|||||||
Total |
88,911.11 |
17 |
|
|
|
|||||
Tukey simultaneous comparison t-values (d.f. = 15) |
||||||||||
School 3 |
School 2 |
School 1 |
||||||||
523.3 |
606.7 |
646.7 |
||||||||
School 3 |
523.3 |
|
|
|
||||||
School 2 |
606.7 |
2.75 |
|
|
||||||
School 1 |
646.7 |
4.07 |
1.32 |
|
||||||
critical values for experimentwise error rate: |
||||||||||
0.05 |
2.60 |
|||||||||
0.01 |
3.42 |
|||||||||
Use the above output to answer the following questions:
- Complete the ANOVA table
- Write the null Ho and alternative hypotheses H1
- Use Descriptive statistics output to check verify normality of the 3 populations
- Use Descriptive statistics output to check constant variance (equal of the population variances)
- Use critical value method, to test the claim at a = 05,
- Use P-value method, to test the claim at a = 05
- If differences exists. Use the Tukey test to find which pairs of means are significantly different? at a = 05
Trending now
This is a popular solution!
Step by step
Solved in 2 steps