Problem One а) Find Laplace transform of f(t) = te-tcost (Hint:L[t" ƒ(t)] = (-1)"F(") (s)) 3s-7 b) Find Inverse Laplace transform of F(s) : s2+2s+5' sta (Hint:L[e¬at cosbt] L[e-atsinbt] = %3D (s+a)²+b²' (s+a)²+b²'

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Problem One**

a) Find Laplace transform of \( f(t) = te^{-t} \cos t \).
   (Hint: \( L[t^n f(t)] = (-1)^n F^{(n)}(s) \))

b) Find Inverse Laplace transform of \( F(s) = \frac{3s - 7}{s^2 + 2s + 5} \).

(Hint: \( L[e^{-at} \cos bt] = \frac{s + a}{(s + a)^2 + b^2} \), \( L[e^{-at} \sin bt] = \frac{b}{(s + a)^2 + b^2} \))
Transcribed Image Text:**Problem One** a) Find Laplace transform of \( f(t) = te^{-t} \cos t \). (Hint: \( L[t^n f(t)] = (-1)^n F^{(n)}(s) \)) b) Find Inverse Laplace transform of \( F(s) = \frac{3s - 7}{s^2 + 2s + 5} \). (Hint: \( L[e^{-at} \cos bt] = \frac{s + a}{(s + a)^2 + b^2} \), \( L[e^{-at} \sin bt] = \frac{b}{(s + a)^2 + b^2} \))
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Laplace Transformation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,