Problem Isothermal transformation diagram for an iron-carbon alloy of eutectoid com- position (0.76 wt% C). Assume that the specimen begins at 760°C and that it has been held at this temperature long enough to have achieved a complete and homogeneous austenitic structure. 1. Sketch the following treatment on the figure: Rapidly cool to 575°C, hold for 20s, rapidly cool to 350°C, hold for 100s, then quench to room temperature. Specify microcon- tituents with percentage. 2. Sketch the following treatment on the figure: rapidly cool to 600°C, hold 4s, rapidly cool to 450°C, hold for 10s, and rapidly cool to room temperature. Specify microcontituents with percentage. 3. Sketch the following treatment on the figure: rapidly cool to 450°C, hold 10s, rapidly cool to room temperature, heat to 680°C, hold 30hrs, and cool to room temperature. Specify microcontituents with percentage. Temperature (°C) 4. (a) 0.2 wt% C with spheroidite (b) 0.2 wt% C with fine pearlite (e) 0.76 wt% C with fine pearlite (d) 0.76 wt% C with tempered martensite 800 700 600 500 400 300 200 100 10-1 M(start) M(50%) M(90%) Rank from the highest to the lowest hardness: 10 M+A -Eutectoid temperature P 10² Time (s) B 50% 10³ 104 105
Problem Isothermal transformation diagram for an iron-carbon alloy of eutectoid com- position (0.76 wt% C). Assume that the specimen begins at 760°C and that it has been held at this temperature long enough to have achieved a complete and homogeneous austenitic structure. 1. Sketch the following treatment on the figure: Rapidly cool to 575°C, hold for 20s, rapidly cool to 350°C, hold for 100s, then quench to room temperature. Specify microcon- tituents with percentage. 2. Sketch the following treatment on the figure: rapidly cool to 600°C, hold 4s, rapidly cool to 450°C, hold for 10s, and rapidly cool to room temperature. Specify microcontituents with percentage. 3. Sketch the following treatment on the figure: rapidly cool to 450°C, hold 10s, rapidly cool to room temperature, heat to 680°C, hold 30hrs, and cool to room temperature. Specify microcontituents with percentage. Temperature (°C) 4. (a) 0.2 wt% C with spheroidite (b) 0.2 wt% C with fine pearlite (e) 0.76 wt% C with fine pearlite (d) 0.76 wt% C with tempered martensite 800 700 600 500 400 300 200 100 10-1 M(start) M(50%) M(90%) Rank from the highest to the lowest hardness: 10 M+A -Eutectoid temperature P 10² Time (s) B 50% 10³ 104 105
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 5 steps with 6 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY