Problem I. (i) Using Bohr model for atomic hydrogen, obtain energy levels for the 2s, 3s and 3p states in the actual number with the unit of [eV]. We consider a transition that electron in the 3p state emits a photon and make a transition to the 2s state. What is the frequency v of this photon ? (ii) Now we do not include electron spin angular momentum, and just estimate an effect of a magnetic field B on this transition (Normal Zeeman effect) with orbital angular momentum. How many lines of optical transition do we expect? What is the interval of the frequency in the field B = 0.1 Tesla? (iii) In this situation, we do not expect transition from 3s to 2s state if the electron is initially in the 3s state, Explain the reason. (iv) We now consider an effect of magnetic field B to a free electron spin (not in Hydrogen, but a free electron). The magnetic field of B = 1.0 Tesla will split the energy level into two (Zeeman) levels. Obtain the level difference in the unit of [eV] from the value of magnetic dipolar moment of an electron. What is the frequency v of the electro-magnetic wave which can cause transition between the Zeeman levels ? (v) Electron spin in the magnetic field B = 1.0 Tesla undergoes Larmor precession, Obtain the precession frequency by using the relationship between the angular momentum and the torque. (vi) If we put an electric dipole moment in the electric field, shall we expect the similar precession motion? Answer yes or no, and attach a brief reasoning. Please Answer (i)-(vi)
Problem I. (i) Using Bohr model for atomic hydrogen, obtain energy levels for the 2s, 3s and 3p states in the actual number with the unit of [eV]. We consider a transition that electron in the 3p state emits a photon and make a transition to the 2s state. What is the frequency v of this photon ? (ii) Now we do not include electron spin angular momentum, and just estimate an effect of a magnetic field B on this transition (Normal Zeeman effect) with orbital angular momentum. How many lines of optical transition do we expect? What is the interval of the frequency in the field B = 0.1 Tesla? (iii) In this situation, we do not expect transition from 3s to 2s state if the electron is initially in the 3s state, Explain the reason. (iv) We now consider an effect of magnetic field B to a free electron spin (not in Hydrogen, but a free electron). The magnetic field of B = 1.0 Tesla will split the energy level into two (Zeeman) levels. Obtain the level difference in the unit of [eV] from the value of magnetic dipolar moment of an electron. What is the frequency v of the electro-magnetic wave which can cause transition between the Zeeman levels ? (v) Electron spin in the magnetic field B = 1.0 Tesla undergoes Larmor precession, Obtain the precession frequency by using the relationship between the angular momentum and the torque. (vi) If we put an electric dipole moment in the electric field, shall we expect the similar precession motion? Answer yes or no, and attach a brief reasoning. Please Answer (i)-(vi)
College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 5 steps
Recommended textbooks for you
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON