Problem I Determine for which values of the real parameter a the following matrix is not invertible. 5. 9. 13. 17. a 1 1 α) 1 01 1 01 D 1 1 011 01 1 10 ιιια 0 a 1 1 1 10 1 1 1a 01 a 1 101 1 01 6. 10. 14. 18. 0 1 1 1 a 0 1 a 101 1 1 0, 1 1 1 11 αι 110 1 1 1 1 0 a 1 a 0 1 10 D 1110 0 0, 1 11 1011 a 110, 0 1 1 1 101 a 1101 10 D 3. 7. 11. 15. 19. 0 1 1 1 1011 α 1 1 1 10, a 1 1 1 1011 11 1 I 0, D 1 101 1 110 a 1 0 0 1 0 1 a 1 10 11 1 1 a 1 1 1 0 III 0, € 01 1 1101 1 a 0 | 4. 12. 16. 20. I 0/ a 0 1 10 1 a 01 1 01 D 1 0, a a 101 1 101 0 D 10 11 a 10 1 0 0 a 11 1011 1 1 0 a

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Please do parts 9-12… linear algebra review
Problem I Determine for which values of the real parameter a the following matrix is not
invertible.
1.
5.
9.
13.
17.
a 11 a
101 1
1 1 0 1
1110
a 1 1 1
101 1
1
a
0 a
1
a 0 1 1
1 0 1
1 1 0
10
1 1 1
1
1
1 1 1
1011
a
1 a 01
1 1 10
0 1 a 1
10 1 1
a 10 1
1
1 1 0
2.
6.
10.
14.
18.
0 1 1 1
0
1 a
01
10
0 1 1
1
1
1
1
0
0 1 1
1
10 a 1
1 a0 1
10
a
1 1
01 1
a
1
10
1 1
1 a
01
1 0
3.
7.
11.
15.
19.
0 1 1 1
101 1
a 1 0 a
11 0
1 1 1
0 1 1
a 1
0
1 1 1
011
1 10 a
1 a 0
0 1 a 1
101 1
10 a
110
0
1 1
1
a 0 1 1
10 1
1 1 a 0
4.
8.
12.
16.
20.
0 1 1 1
1 0 1 1
10 1
1
a
0 1 1 1
1
a
a
1
1
a
1
0 1
10
1 101
a 1 10
01
1 0 1
a
1
a
1
a 10 1
1 1 0
0 a
10 11
1 10
a
1 1 0
Transcribed Image Text:Problem I Determine for which values of the real parameter a the following matrix is not invertible. 1. 5. 9. 13. 17. a 11 a 101 1 1 1 0 1 1110 a 1 1 1 101 1 1 a 0 a 1 a 0 1 1 1 0 1 1 1 0 10 1 1 1 1 1 1 1 1 1011 a 1 a 01 1 1 10 0 1 a 1 10 1 1 a 10 1 1 1 1 0 2. 6. 10. 14. 18. 0 1 1 1 0 1 a 01 10 0 1 1 1 1 1 1 0 0 1 1 1 10 a 1 1 a0 1 10 a 1 1 01 1 a 1 10 1 1 1 a 01 1 0 3. 7. 11. 15. 19. 0 1 1 1 101 1 a 1 0 a 11 0 1 1 1 0 1 1 a 1 0 1 1 1 011 1 10 a 1 a 0 0 1 a 1 101 1 10 a 110 0 1 1 1 a 0 1 1 10 1 1 1 a 0 4. 8. 12. 16. 20. 0 1 1 1 1 0 1 1 10 1 1 a 0 1 1 1 1 a a 1 1 a 1 0 1 10 1 101 a 1 10 01 1 0 1 a 1 a 1 a 10 1 1 1 0 0 a 10 11 1 10 a 1 1 0
Expert Solution
steps

Step by step

Solved in 4 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,