Problem An electric charge Q is distributed uniformly along a thick and enormously long conducting wire with radius R and length L. Using Gauss's law, what is the electric field at distancer perpendicular to the wire? (Consider the cases inside and outside the wire) Solution To find the electric field inside atr distance from the wire we will use the Gauss's law which is expressed as We will choose a symmetric Gaussian surface, which is the surface a cylinder excluding its ends, then evaluate the dot product to obtain A = (Equation 1) Case 1: Inside the wire Since, r falls inside the wire, then all the enclosed charge must be: denc = On the other hand, the Gaussian surface inside the wire is given by A = Using Equation 1, the electric field in simplified form is E = Case 2: Outside the wire Since, r falls outside the wire, then, all the charge must be enclosed, thus denc = On the other hand, the Gaussian surface outside the wire is given by A = Using Equation 1, the electric field in simplified form is E =

Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:Robert L. Boylestad
Chapter1: Introduction
Section: Chapter Questions
Problem 1P: Visit your local library (at school or home) and describe the extent to which it provides literature...
icon
Related questions
Question
Problem
An electric charge Q is distributed uniformly along a thick and enormously long conducting wire with radius R and length L. Using Gauss's law, what is the electric field at distance r
perpendicular to the wire? (Consider the cases inside and outside the wire)
Solution
To find the electric field inside at r distance from the wire we will use the Gauss's law which is expressed as
DE - dÃ=
We will choose a symmetric Gaussian surface, which is the surface a cylinder excluding its ends, then evaluate the dot product to obtain
A =
(Equation 1)
Case 1: Inside the wire
Since, r falls inside the wire, then all the enclosed charge must be:
denc
On the other hand, the Gaussian surface inside the wire is given by
A =
Using Equation 1, the electric field in simplified form is
E =
Case 2: Outside the wire
Since, r falls outside the wire, then, all the charge must be enclosed, thus
denc =
On the other hand, the Gaussian surface outside the wire is given by
A =
Using Equation 1, the electric field in simplified form is
E =
Transcribed Image Text:Problem An electric charge Q is distributed uniformly along a thick and enormously long conducting wire with radius R and length L. Using Gauss's law, what is the electric field at distance r perpendicular to the wire? (Consider the cases inside and outside the wire) Solution To find the electric field inside at r distance from the wire we will use the Gauss's law which is expressed as DE - dÃ= We will choose a symmetric Gaussian surface, which is the surface a cylinder excluding its ends, then evaluate the dot product to obtain A = (Equation 1) Case 1: Inside the wire Since, r falls inside the wire, then all the enclosed charge must be: denc On the other hand, the Gaussian surface inside the wire is given by A = Using Equation 1, the electric field in simplified form is E = Case 2: Outside the wire Since, r falls outside the wire, then, all the charge must be enclosed, thus denc = On the other hand, the Gaussian surface outside the wire is given by A = Using Equation 1, the electric field in simplified form is E =
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps

Blurred answer
Knowledge Booster
Capacitance
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Introductory Circuit Analysis (13th Edition)
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
Delmar's Standard Textbook Of Electricity
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
Fundamentals of Electric Circuits
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:
9780078028229
Author:
Charles K Alexander, Matthew Sadiku
Publisher:
McGraw-Hill Education
Electric Circuits. (11th Edition)
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:
9780134746968
Author:
James W. Nilsson, Susan Riedel
Publisher:
PEARSON
Engineering Electromagnetics
Engineering Electromagnetics
Electrical Engineering
ISBN:
9780078028151
Author:
Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:
Mcgraw-hill Education,