Problem 9. For each of the following functions d: RxR → [0, 0o), say whether d is a metric. Briefly explain your reasoning. a. d(x, y) = 2/x - yl b. d(x, y) = |x|+ lyl. bas c. d(x, y) = |I| 1+y* d. d(x, y) = x - y|³. teq ai Y. it seit vor, Auskios die tou a Z iw bigatxe i sviD.3 moldor

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
## Problem 9

For each of the following functions \( d: \mathbb{R} \times \mathbb{R} \rightarrow [0, \infty) \), say whether \( d \) is a metric. Briefly explain your reasoning.

a. \( d(x, y) = 2|x - y| \)

b. \( d(x, y) = |x| + |y| \)

c. \( d(x, y) = \frac{|x|}{1 + |y|} \)

d. \( d(x, y) = |x - y|^{1/3} \)
Transcribed Image Text:## Problem 9 For each of the following functions \( d: \mathbb{R} \times \mathbb{R} \rightarrow [0, \infty) \), say whether \( d \) is a metric. Briefly explain your reasoning. a. \( d(x, y) = 2|x - y| \) b. \( d(x, y) = |x| + |y| \) c. \( d(x, y) = \frac{|x|}{1 + |y|} \) d. \( d(x, y) = |x - y|^{1/3} \)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,