Problem #6: Use the divergence theorem to find the outward flux F.nds of the vector field F = tan¹ (5y +82) i + g²² +3005xj + √√x² + y² + z² k₂ where S is the surface of the region bounded by the graphs of = √²+² and x² + y² + ² = 64.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Problem #6:
Use the divergence theorem to find the outward flux
F.ndS
of
the
Ftan¹(5y +82) i + ²+3 cosxj+
field
²+y² + z² k₂
where S is the surface of the region bounded by the graphs
of = √²+² and x² +3²+² = 64.
vector
Transcribed Image Text:Problem #6: Use the divergence theorem to find the outward flux F.ndS of the Ftan¹(5y +82) i + ²+3 cosxj+ field ²+y² + z² k₂ where S is the surface of the region bounded by the graphs of = √²+² and x² +3²+² = 64. vector
Expert Solution
Step 1: Application of Divergence theorem

Given vector field is 

F equals tan to the power of negative 1 end exponent open parentheses 5 y plus 8 z close parentheses i plus e to the power of z squared plus 3 cos left parenthesis x right parenthesis end exponent j plus square root of x squared plus y squared plus z squared end root k and surface S is the region bounded by the graphs z equals square root of x squared plus y squared end root space a n d space x squared plus y squared plus z squared equals 64

Now nabla. F equals fraction numerator z over denominator square root of left parenthesis x squared plus y squared plus z squared right parenthesis end root end fraction

So using Divergence theorem ,

double integral subscript S F. n d S equals triple integral subscript V nabla. F d V equals integral subscript x equals negative 4 square root of 2 end subscript superscript 4 square root of 2 end superscript integral subscript y equals negative square root of open parentheses 32 minus x squared close parentheses end root end subscript superscript square root of open parentheses 32 minus x squared close parentheses end root end superscript integral subscript z equals square root of open parentheses x squared plus y squared close parentheses end root end subscript superscript square root of open parentheses 64 minus x squared minus y squared close parentheses end root end superscript fraction numerator z over denominator square root of x squared plus y squared plus z squared end root end fraction d z d y d x

steps

Step by step

Solved in 3 steps with 10 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,