Problem 5.20 18 (a) Find the density p of mobile charges in a piece of copper, assuming each atom contributes one free electron. [Look up the necessary physical constants.] (b) Calculate the average electron velocity in a copper wire 1 mm in diameter, carrying a current of 1 A. [Note: This is literally a snail's pace. How, then, can you carry on a long distance telephone conversation?] An apparent detection (B. Cabrera, Phys. Rev. Lett. 48, 1378 (1982)) has never been reproduced- and not for want of trying. For a delightful brief history of ideas about magnetism, see Chapter 1 in D. C. Mattis, The Theory of Magnetism (New York: Harper & Row, 1965). 5.4 Magnetic Vector Potential (c) What is the force of attraction between two such wires, 1 cm apart? 243 (d) If you could somehow remove the stationary positive charges, what would the electrical repulsion force be? How many times greater than the magnetic force is it?

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
Question
Problem 5.20
18
(a) Find the density p of mobile charges in a piece of copper, assuming each atom
contributes one free electron. [Look up the necessary physical constants.]
(b) Calculate the average electron velocity in a copper wire 1 mm in diameter,
carrying a current of 1 A. [Note: This is literally a snail's pace. How, then, can
you carry on a long distance telephone conversation?]
An apparent detection (B. Cabrera, Phys. Rev. Lett. 48, 1378 (1982)) has never been reproduced-
and not for want of trying. For a delightful brief history of ideas about magnetism, see Chapter 1 in
D. C. Mattis, The Theory of Magnetism (New York: Harper & Row, 1965).
5.4 Magnetic Vector Potential
(c) What is the force of attraction between two such wires, 1 cm apart?
243
(d) If you could somehow remove the stationary positive charges, what would the
electrical repulsion force be? How many times greater than the magnetic force
is it?
Transcribed Image Text:Problem 5.20 18 (a) Find the density p of mobile charges in a piece of copper, assuming each atom contributes one free electron. [Look up the necessary physical constants.] (b) Calculate the average electron velocity in a copper wire 1 mm in diameter, carrying a current of 1 A. [Note: This is literally a snail's pace. How, then, can you carry on a long distance telephone conversation?] An apparent detection (B. Cabrera, Phys. Rev. Lett. 48, 1378 (1982)) has never been reproduced- and not for want of trying. For a delightful brief history of ideas about magnetism, see Chapter 1 in D. C. Mattis, The Theory of Magnetism (New York: Harper & Row, 1965). 5.4 Magnetic Vector Potential (c) What is the force of attraction between two such wires, 1 cm apart? 243 (d) If you could somehow remove the stationary positive charges, what would the electrical repulsion force be? How many times greater than the magnetic force is it?
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 3 images

Blurred answer
Similar questions
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON