Problem #5) A pulley having a moment of inertia of 0.191b-ft-s² is connected to two masses as shown. The masses A and B have linear acceleration of 1.85ft/s² upward and 1.11 ft/s² downward, respectively. Assuming no axle friction, determine (a) the tension forces TA and TB in the cables connecting the masses, and (b) the angular acceleration a of the pulley. Include and present the Free Body Diagram and Inertial Response Diagram as part of the solving process. Hint #1: Hint #2: use mA = 0.1553slugs, and mB = 0.3106slugs treat each body separately 6 in. B 10 lb 10 in. 5 lb
Problem #5) A pulley having a moment of inertia of 0.191b-ft-s² is connected to two masses as shown. The masses A and B have linear acceleration of 1.85ft/s² upward and 1.11 ft/s² downward, respectively. Assuming no axle friction, determine (a) the tension forces TA and TB in the cables connecting the masses, and (b) the angular acceleration a of the pulley. Include and present the Free Body Diagram and Inertial Response Diagram as part of the solving process. Hint #1: Hint #2: use mA = 0.1553slugs, and mB = 0.3106slugs treat each body separately 6 in. B 10 lb 10 in. 5 lb
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
![Problem #5)
A pulley having a moment of inertia of 0.191b-ft-s² is connected
to two masses as shown. The masses A and B have linear acceleration
of 1.85ft/s² upward and 1.11 ft/s² downward, respectively. Assuming no
axle friction, determine (a) the tension forces TA and TB in the cables
connecting the masses, and (b) the angular acceleration a of the pulley. 6 in.
Include and present the Free Body Diagram and Inertial Response
Diagram as part of the solving process.
Hint #1:
Hint #2:
use mA = 0.1553slugs, and mB = 0.3106slugs
treat each body separately
B
10 lb
10 in.
A
5 lb](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F5a1c5c31-0536-497d-99d7-6745b202906f%2F7af35a97-a809-4890-98e6-22412c23eece%2Fzspr9jc_processed.jpeg&w=3840&q=75)
Transcribed Image Text:Problem #5)
A pulley having a moment of inertia of 0.191b-ft-s² is connected
to two masses as shown. The masses A and B have linear acceleration
of 1.85ft/s² upward and 1.11 ft/s² downward, respectively. Assuming no
axle friction, determine (a) the tension forces TA and TB in the cables
connecting the masses, and (b) the angular acceleration a of the pulley. 6 in.
Include and present the Free Body Diagram and Inertial Response
Diagram as part of the solving process.
Hint #1:
Hint #2:
use mA = 0.1553slugs, and mB = 0.3106slugs
treat each body separately
B
10 lb
10 in.
A
5 lb
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
![Control Systems Engineering](https://www.bartleby.com/isbn_cover_images/9781118170519/9781118170519_smallCoverImage.gif)
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
![Mechanics of Materials (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781337093347/9781337093347_smallCoverImage.gif)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
![Engineering Mechanics: Statics](https://www.bartleby.com/isbn_cover_images/9781118807330/9781118807330_smallCoverImage.gif)
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY