Problem 4 f(x) = an = 1 if x < 4/6 3 if Find the Fourier cosine series of f 2 (3 An (NTT) - 2 Din (NT)). MIT Note: 4164x24/2 else where The even extension of f to [-L₁ L] is if 02x2L 3f1-x) if -L

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
4 Please write all steps
### Problem 4

Given the piecewise function \( f(x) \) defined as:

\[ 
f(x) = 
\begin{cases} 
1 & \text{if } x < L/6 \\ 
3 & \text{if } L/6 < x < L/2 \\ 
0 & \text{elsewhere}
\end{cases}
\]

Find the Fourier Cosine Series of \( f \).

### Solution:

The coefficient \( A_n \) is given by:

\[ 
A_n = \frac{2}{n\pi} \left( 3 \sin \left( \frac{n\pi}{2} \right) - 2 \sin \left( \frac{n\pi}{6} \right) \right)
\]

### Notes:

- The even extension of \( f \) to the interval \([-L, L]\) is:

\[ 
F(x) = 
\begin{cases} 
f(x) & \text{if } 0 < x < L \\ 
f(-x) & \text{if } -L < x < 0
\end{cases}
\]

- The odd extension of \( f \) to the interval \([-L, L]\) is:

\[ 
F(x) = 
\begin{cases} 
f(x) & \text{if } 0 < x < L \\ 
-f(-x) & \text{if } -L < x < 0
\end{cases}
\]

This problem focuses on finding the Fourier series representation of a given piecewise function, highlighting the distinction between even and odd extensions to expand the function over a given interval.
Transcribed Image Text:### Problem 4 Given the piecewise function \( f(x) \) defined as: \[ f(x) = \begin{cases} 1 & \text{if } x < L/6 \\ 3 & \text{if } L/6 < x < L/2 \\ 0 & \text{elsewhere} \end{cases} \] Find the Fourier Cosine Series of \( f \). ### Solution: The coefficient \( A_n \) is given by: \[ A_n = \frac{2}{n\pi} \left( 3 \sin \left( \frac{n\pi}{2} \right) - 2 \sin \left( \frac{n\pi}{6} \right) \right) \] ### Notes: - The even extension of \( f \) to the interval \([-L, L]\) is: \[ F(x) = \begin{cases} f(x) & \text{if } 0 < x < L \\ f(-x) & \text{if } -L < x < 0 \end{cases} \] - The odd extension of \( f \) to the interval \([-L, L]\) is: \[ F(x) = \begin{cases} f(x) & \text{if } 0 < x < L \\ -f(-x) & \text{if } -L < x < 0 \end{cases} \] This problem focuses on finding the Fourier series representation of a given piecewise function, highlighting the distinction between even and odd extensions to expand the function over a given interval.
Expert Solution
Step 1

Advanced Math homework question answer, step 1, image 1

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,