Problem 4 For the motor in Problem 1 and for a fan-type load, calculate the following, assuming that the supply frequency is reduced by 20%: a. Motor speed b. Starting torque c. Starting current d. Motor efficiency (ignore rotational and core losses)

Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:Robert L. Boylestad
Chapter1: Introduction
Section: Chapter Questions
Problem 1P: Visit your local library (at school or home) and describe the extent to which it provides literature...
icon
Related questions
Question

For a 3 phase, 209V, 6 Pole, Y connected motor.

R1 = 0.128 ohm, R'2 = 0.0935 ohm. Xeq = 0.49 ohm. Slip at full load is 2%. Motor load is fan type. If an external resistance equal to the rotor resistance is added to the rotor circuit.

Problem 4
For the motor in Problem 1 and for a fan-type load, calculate the following, assuming that the supply
frequency is reduced by 20%:
a. Motor speed
b. Starting torque
c. Starting current
d. Motor efficiency (ignore rotational and core losses)
Transcribed Image Text:Problem 4 For the motor in Problem 1 and for a fan-type load, calculate the following, assuming that the supply frequency is reduced by 20%: a. Motor speed b. Starting torque c. Starting current d. Motor efficiency (ignore rotational and core losses)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps

Blurred answer
Follow-up Questions
Read through expert solutions to related follow-up questions below.
Follow-up Question

Why would the slip not change? If you start the motor at 80% of the rated frequency, wouldn't that be 48 Hz?

Solution
Bartleby Expert
SEE SOLUTION
Knowledge Booster
Electromagnetics Torque and Power
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Introductory Circuit Analysis (13th Edition)
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
Delmar's Standard Textbook Of Electricity
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
Fundamentals of Electric Circuits
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:
9780078028229
Author:
Charles K Alexander, Matthew Sadiku
Publisher:
McGraw-Hill Education
Electric Circuits. (11th Edition)
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:
9780134746968
Author:
James W. Nilsson, Susan Riedel
Publisher:
PEARSON
Engineering Electromagnetics
Engineering Electromagnetics
Electrical Engineering
ISBN:
9780078028151
Author:
Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:
Mcgraw-hill Education,