Problem 3. Consider the direct-sequence CDMA system as de- scribed in Lecture 15. At the receiver suppose that instead of using the local code qi(t) we instead use q₁(t+A) where A is some ± fraction of a bit time, i.e., the local code may be shifted one direction or the other. Compute the degradation (in dB) to E₁/No due to a nonzero A at the output of the corre- lator for BPSK signaling. You may assume for the local code that adjacent chips are equally likely to match or differ.
Problem 3. Consider the direct-sequence CDMA system as de- scribed in Lecture 15. At the receiver suppose that instead of using the local code qi(t) we instead use q₁(t+A) where A is some ± fraction of a bit time, i.e., the local code may be shifted one direction or the other. Compute the degradation (in dB) to E₁/No due to a nonzero A at the output of the corre- lator for BPSK signaling. You may assume for the local code that adjacent chips are equally likely to match or differ.
Related questions
Question
100%
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images