Problem 3: Attournamento 0) As a preliminary helper result, show by induction that for events E1, E2,..., Em, P(E1 or E2 or .. or EM) < P(Em). (2) m=1 Consider a tournament between N teams, each team playing each of the other teams. 1) How many games will be played in total, in the tournament? We can represent the results of this tournament by a directed graph: node i represents team i, and an edge exists i → j if team i beat team j. 2) Show (by example) there is a tournament that might occur, where every team is beaten by some team. The above problem suggests that it may be impossible to declare an absolute winner, as everyone may be beaten by somebody. We could relax this slightly in the following way: let's call team i a k-winner if there is a group of k-many teams that were each beaten by team i. Other teams may have beaten team i, but there is at least a group of size k that was roundly beaten by i. 3) If the results of each game are decided by fair coin flip, what is the probability that a given team i is a k-winner? 4) Using result 3.0, bound the probability that there exists a k-winner in a tournament of size N? Write it nicely as you can but don't beat yourself up too much with it.
Problem 3: Attournamento 0) As a preliminary helper result, show by induction that for events E1, E2,..., Em, P(E1 or E2 or .. or EM) < P(Em). (2) m=1 Consider a tournament between N teams, each team playing each of the other teams. 1) How many games will be played in total, in the tournament? We can represent the results of this tournament by a directed graph: node i represents team i, and an edge exists i → j if team i beat team j. 2) Show (by example) there is a tournament that might occur, where every team is beaten by some team. The above problem suggests that it may be impossible to declare an absolute winner, as everyone may be beaten by somebody. We could relax this slightly in the following way: let's call team i a k-winner if there is a group of k-many teams that were each beaten by team i. Other teams may have beaten team i, but there is at least a group of size k that was roundly beaten by i. 3) If the results of each game are decided by fair coin flip, what is the probability that a given team i is a k-winner? 4) Using result 3.0, bound the probability that there exists a k-winner in a tournament of size N? Write it nicely as you can but don't beat yourself up too much with it.
Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
please provide complete handwritten solution for Q6
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning