Problem 22. Tom For a 2 P-Penodic piecewise continuous function, the Parneval Identity is given by to So (f(x) ³ dix = 20² + ½ € (a + b) n=l 2P J-P a) The Fourier Series of the 257-Periodic function f(x) given interval [-11₂ 113 for f(x) = x²³ - 11x (i)n pinnx 3 is 671 n3 Use the Parseval Identity to evaluate Ans: 00 ट n=l SIN 징 쿄M8 하 76 ;) 4774 945 on the

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
022 Please show all the steps
**Problem 22:**

For a \(2P\)-periodic piecewise continuous function, the Parseval Identity is given by:

\[
\frac{1}{2P} \int_{-P}^{P} (f(x))^2 \, dx = \frac{a_0^2}{4} + \frac{1}{2} \sum_{n=1}^{\infty} (a_n^2 + b_n^2)
\]

a) The Fourier series of the \(2\pi\)-periodic function \(f(x)\) given on the interval \([- \pi, \pi]\) for \(f(x) = x^3 - \pi^2 x\) is:

\[
6\pi \sum_{n=1}^{\infty} \frac{(-1)^n \sin n x}{n^3}
\]

Use the Parseval Identity to evaluate:

\[
\sum_{n=1}^{\infty} \frac{1}{n^6}
\]

**Answer:**

\[
\sum_{n=1}^{\infty} \frac{1}{n^6} = \frac{4 \pi^6}{945}
\]
Transcribed Image Text:**Problem 22:** For a \(2P\)-periodic piecewise continuous function, the Parseval Identity is given by: \[ \frac{1}{2P} \int_{-P}^{P} (f(x))^2 \, dx = \frac{a_0^2}{4} + \frac{1}{2} \sum_{n=1}^{\infty} (a_n^2 + b_n^2) \] a) The Fourier series of the \(2\pi\)-periodic function \(f(x)\) given on the interval \([- \pi, \pi]\) for \(f(x) = x^3 - \pi^2 x\) is: \[ 6\pi \sum_{n=1}^{\infty} \frac{(-1)^n \sin n x}{n^3} \] Use the Parseval Identity to evaluate: \[ \sum_{n=1}^{\infty} \frac{1}{n^6} \] **Answer:** \[ \sum_{n=1}^{\infty} \frac{1}{n^6} = \frac{4 \pi^6}{945} \]
Expert Solution
Step 1q

Advanced Math homework question answer, step 1, image 1

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,