Problem 2–17. Fluid Statics. Pool drains can be dangerous things: There was a tragic case recently in this area in which a child was stuck in a drain on the bottom, plugging it, and drowning as a result. Here we look at a somewhat simpler problem. Suppose a ball of radius R is plugging a drain of diameter D at the bottom of a pool of depth h as shown in the figure. Obviously, R > D/2 or the ball goes down the drain! Determine the conditions under which the net force on the ball is zero. Assume that the pressure distribution in the drain is just atmospheric pressure, and that in the water is governed by the hydrostatic pressure distribution. If R is 1 ft and D is 6 in, what is the corresponding depth? h R D

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question

the image is the question 

Problem 2–17. Fluid Statics. Pool drains can be dangerous things: There was a tragic
case recently in this area in which a child was stuck in a drain on the bottom, plugging it,
and drowning as a result. Here we look at a somewhat simpler problem. Suppose a ball of
radius R is plugging a drain of diameter D at the bottom of a pool of depth h as shown in
the figure. Obviously, R > D/2 or the ball goes down the drain! Determine the conditions
under which the net force on the ball is zero. Assume that the pressure distribution in the
drain is just atmospheric pressure, and that in the water is governed by the hydrostatic
pressure distribution. If R is 1 ft and D is 6 in, what is the corresponding depth?
h
R
D
Transcribed Image Text:Problem 2–17. Fluid Statics. Pool drains can be dangerous things: There was a tragic case recently in this area in which a child was stuck in a drain on the bottom, plugging it, and drowning as a result. Here we look at a somewhat simpler problem. Suppose a ball of radius R is plugging a drain of diameter D at the bottom of a pool of depth h as shown in the figure. Obviously, R > D/2 or the ball goes down the drain! Determine the conditions under which the net force on the ball is zero. Assume that the pressure distribution in the drain is just atmospheric pressure, and that in the water is governed by the hydrostatic pressure distribution. If R is 1 ft and D is 6 in, what is the corresponding depth? h R D
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Knowledge Booster
Engineering Drawing
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY