Problem 2. Vectors V₁ = (4,6,7), V₂ = (0,1,1) and V3 = (0,1,2) form a basis for the vector space R³. Vectors u₁ = (1, 1, 1), u₂ = (1,2,2) and u3 = (2,3,4) form another basis for R³. (i) Find the transition matrix from the standard basis e₁,e2, es to the ordered basis u₁, U2, U3. (ii) Find the transition matrix from the ordered basis V₁, V₂, V3 to the ordered basis u₁, U₂, U3. (iii) Find coordinates of the vector w = 2v₁ +3v₂ - 4v3 relative to the basis V₁, V2, V3, coordinates of w relative to the basis u₁, U₂, U3, and coordinates of w relative to the standard basis.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Parts ii and iii please

**Problem 2.** Vectors **v₁** = (4, 6, 7), **v₂** = (0, 1, 1) and **v₃** = (0, 1, 2) form a basis for the vector space ℝ³. Vectors **u₁** = (1, 1, 1), **u₂** = (1, 2, 2) and **u₃** = (2, 3, 4) form another basis for ℝ³.

(i) Find the transition matrix from the standard basis **e₁, e₂, e₃** to the ordered basis **u₁, u₂, u₃**.  
(ii) Find the transition matrix from the ordered basis **v₁, v₂, v₃** to the ordered basis **u₁, u₂, u₃**.  
(iii) Find coordinates of the vector **w** = 2**v₁** + 3**v₂** - 4**v₃** relative to the basis **v₁, v₂, v₃**, coordinates of **w** relative to the basis **u₁, u₂, u₃**, and coordinates of **w** relative to the standard basis.
Transcribed Image Text:**Problem 2.** Vectors **v₁** = (4, 6, 7), **v₂** = (0, 1, 1) and **v₃** = (0, 1, 2) form a basis for the vector space ℝ³. Vectors **u₁** = (1, 1, 1), **u₂** = (1, 2, 2) and **u₃** = (2, 3, 4) form another basis for ℝ³. (i) Find the transition matrix from the standard basis **e₁, e₂, e₃** to the ordered basis **u₁, u₂, u₃**. (ii) Find the transition matrix from the ordered basis **v₁, v₂, v₃** to the ordered basis **u₁, u₂, u₃**. (iii) Find coordinates of the vector **w** = 2**v₁** + 3**v₂** - 4**v₃** relative to the basis **v₁, v₂, v₃**, coordinates of **w** relative to the basis **u₁, u₂, u₃**, and coordinates of **w** relative to the standard basis.
Expert Solution
Step 1: Finding the transition matrix

 

v1=4,6,7, v2=0,1,1, v3=0,1,2u1=1,1,1,  u2=1,2,2, u3=2,3,4

Therefore 

u1=av1+bv2+cv3u2=dv1+ev2+fv3u3=gv1+hv2+iv31,1,1=a4,6,7+b0,1,1+c0,1,2                  =4a, 6a+b+c,7a+b+2ca=14, b=-14,c=-14   1,2,2=d4,6,7+e0,1,1+f0,1,2               =4d, 6d+e+f,7d+e+2fd=14, e=34, f=-14 2,3,4=g4,6,7+h0,1,1+i0,1,2               =4g, 6g+h+i,4d+h+2ig=12, h=-12, i=12M=adgbehcfi      M=141412-1434-12-14-1412

Hence the matrix is 141412-1434-12-14-1412

steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,