Problem 2. This is a four-part problem. A +2.5% grade intersects with a –1.5% grade at station (735 + 30.75) at an elevation of 475 ft. Part A. If the design speed is 65 mi/h, determine the minimum length, in ft, of vertical curve. Part B. If the design speed is 65 mi/h, determine the elevation, in ft, of the point of vertical tangency also known as end of vertical curve. Part C. If the design speed is 65 mi/h, determine the elevation, in ft, of the highpoint of the curve.
Problem 2. This is a four-part problem. A +2.5% grade intersects with a –1.5% grade at station (735 + 30.75) at an elevation of 475 ft. Part A. If the design speed is 65 mi/h, determine the minimum length, in ft, of vertical curve. Part B. If the design speed is 65 mi/h, determine the elevation, in ft, of the point of vertical tangency also known as end of vertical curve. Part C. If the design speed is 65 mi/h, determine the elevation, in ft, of the highpoint of the curve.
Chapter2: Loads On Structures
Section: Chapter Questions
Problem 1P
Related questions
Question
Problem 2. This is a four-part problem. A +2.5% grade intersects with a –1.5% grade at station (735 + 30.75) at an elevation of 475 ft.
Part A. If the design speed is 65 mi/h, determine the minimum length, in ft, of vertical curve.
Part B. If the design speed is 65 mi/h, determine the elevation, in ft, of the point of vertical tangency also known as end of vertical curve.
Part C. If the design speed is 65 mi/h, determine the elevation, in ft, of the highpoint of the curve.
Part D. If the design speed is 65 mi/h, determine the distance, in ft, from the point of vertical curvature (also known as the beginning of curve) to the highpoint of the curve.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 4 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
Structural Analysis (10th Edition)
Civil Engineering
ISBN:
9780134610672
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning
Structural Analysis (10th Edition)
Civil Engineering
ISBN:
9780134610672
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning
Fundamentals of Structural Analysis
Civil Engineering
ISBN:
9780073398006
Author:
Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel Lanning
Publisher:
McGraw-Hill Education
Traffic and Highway Engineering
Civil Engineering
ISBN:
9781305156241
Author:
Garber, Nicholas J.
Publisher:
Cengage Learning